首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2526篇
  免费   4篇
  国内免费   6篇
航空   1187篇
航天技术   913篇
综合类   9篇
航天   427篇
  2021年   18篇
  2019年   16篇
  2018年   58篇
  2017年   35篇
  2016年   39篇
  2015年   12篇
  2014年   55篇
  2013年   89篇
  2012年   55篇
  2011年   85篇
  2010年   71篇
  2009年   118篇
  2008年   139篇
  2007年   58篇
  2006年   63篇
  2005年   64篇
  2004年   64篇
  2003年   85篇
  2002年   43篇
  2001年   92篇
  2000年   48篇
  1999年   65篇
  1998年   69篇
  1997年   66篇
  1996年   64篇
  1995年   87篇
  1994年   86篇
  1993年   41篇
  1992年   50篇
  1991年   15篇
  1990年   24篇
  1989年   51篇
  1988年   32篇
  1987年   20篇
  1986年   28篇
  1985年   73篇
  1984年   70篇
  1983年   42篇
  1982年   69篇
  1981年   67篇
  1980年   17篇
  1979年   10篇
  1978年   31篇
  1977年   12篇
  1975年   24篇
  1974年   16篇
  1973年   16篇
  1972年   16篇
  1970年   9篇
  1969年   12篇
排序方式: 共有2536条查询结果,搜索用时 375 毫秒
191.
The modified generalized sign test processor is a nonparametric, adaptive detector for 2-D search radars. The detector ranks a sample under test with its neighboring samples and integrates (on a pulse-to-pulse basis) the ranks with a two-pole filter. A target is declared when the integrated output exceeds two thresholds. The first threshold is fixed and yields a 10-6 probability of false alarm when the neighboring samples are independent and identically distributed. The second threshold is adaptive and maintains a low false-alarm rate when the integrated neighboring samples are correlated and when there are nonhomogeneities, such as extraneous targets, in the neighboring cells. Using Monte Carlo techniques, probability of false-alarm results, probability of detection curves, and angular accuracy curves have been generated for this detector. The detector was built and PPI photographs are used to indicate the detector's performance when the radar is operated over land clutter.  相似文献   
192.
The Wave Experiment, F4, on the Swedish/German satelliteFreja, is designed to measure the electric wave fields up to 4 MHz, the magnetic wave fields up to 16 kHz and the plasma density and its relative variations up to 2 kHz. Six wave signals and four density probe signals can be measured simultaneously. The wave forms of all signals are transmitted to ground without any analysis onboard. The limited TM allocation does not allow continuous sampling of the wave signals, so normally the measurements are made in snapshots of various lengths dependent on sampling frequency, etc. Continuous sampling can be made for shorter time periods by using a 6 Mbyte memory as a buffer.  相似文献   
193.
Range measurements to objects in the world relative to mobile platforms such as ground or air vehicles are critical for visually aided navigation and obstacle detection/avoidance. An approach is presented that consists of a synergistic combination of two types of passive ranging method: binocular stereo and motion stereo. We show a new way to model the errors in binocular and motion stereo in conjunction with an inertial navigation system (INS) and derive the appropriate Kalman filter to refine the estimates from these two stereo ranging techniques. We present results using laboratory images that show that refined estimates can be optimally combined to give range values which are more accurate than any one of the individual estimates from binocular and motion stereo. By incorporating a blending filter, the approach has the potential of providing accurate, dense range measurements for all the pixels in the field of view (FOV)  相似文献   
194.
Plasma and magnetic field signatures from 29 November 1990 indicate that the Ulysses spacecraft passed through a series of interplanetary structures that were most likely formed by magnetic reconnection on open field lines ahead of a coronal mass ejection (CME). This reconnection changed the magnetic topology of the upstream region by converting normal open interplanetary magnetic field into a pair of regions: one magnetically disconnected from the Sun and the other, a tongue, connected back to the Sun at both ends. This process provides a new method for producing both heat flux dropouts and counterstreaming suprathermal electron signatures in interplanetary space. In this paper we expand upon the 29 November case study and argue that reconnection ahead of CMEs should be less common at high heliolatitudes.  相似文献   
195.
We describe for the first time the analysis of high energy electrons (above 240 MeV) from the COSPIN/KET experiment onboard Ulysses. The electron time profiles in four energy windows are presented from Oct. 90 to the end of March 94, up to a maximum heliographic latitude of 57 °S. The recovery rates we derived for the electrons are compared to the recovery rates of positively charged particles with the same rigidity.  相似文献   
196.
The basic physical processes that lead to the long-term modulation of cosmic rays by the solar wind have been known for many years. However our knowledge of the structure of the heliosphere, which determines which processes are most important for the modulation, and of the variation of this structure with time and solar activity level is still incomplete. Study of the modulation provides a tool for probing the scale and structure of the heliosphere. While the Pioneer and Voyager spacecraft are surveying the radial structure and extent of the heliosphere at modest heliographic latitudes, theUlysses mission is the first to undertake a nearly complete scan of the latitudinal structure of the modulated cosmic ray intensity in the inner heliosphere (R<5.4 AU).Ulysses will reach latitudes of BORDER="0">80°S in September 1994 and BORDER="0">80°N in July 1995 during the approach to minimum activity in the 11 year solar cycle. We present a first report of measurements extending to latitudes of BORDER="0">52°S, which show surprisingly little latitudinal effect in the modulated intensities and suggest that at this time modulation in the inner heliosphere may be much more spherically symmetric than had generally been believed based upon models and previous observations.  相似文献   
197.
SWE,a comprehensive plasma instrument for the WIND spacecraft   总被引:1,自引:0,他引:1  
The Solar Wind Experiment (SWE) on the WIND spacecraft is a comprehensive, integrated set of sensors which is designed to investigate outstanding problems in solar wind physics. It consists of two Faraday cup (FC) sensors; a vector electron and ion spectrometer (VEIS); a strahl sensor, which is especially configured to study the electron BASELINE" BORDER="0">strahlBASELINE" BORDER="0"> close to the magnetic field direction; and an on-board calibration system. The energy/charge range of the Faraday cups is 150 V to 8 kV, and that of the VEIS is 7 V to 24.8 kV. The time resolution depends on the operational mode used, but can be of the order of a few seconds for 3-D measurements. BASELINE" BORDER="0">Key parametersBASELINE" BORDER="0"> which broadly characterize the solar wind positive ion velocity distribution function will be made available rapidly from the GGS Central Data Handling Facility.  相似文献   
198.
The radial component of the magnetic field at Ulysses, over latitudes from –10° to –45° and distances from 5.3 to 3.8 AU, compares very well with corresponding measurements being made by IMP-8 in the ecliptic at 1AU. There is little, if any, evidence of a latitude gradient. Variances in the field, normalized to the square of the field magnitude, show little change with latitude in variations in the magnitude but a large increase in the transverse field variations. The latter are shown to be caused by the presence of large amplitude, long period Alfvénic fluctuations. This identification is based on the close relation between the magnetic field and velocity perturbations including the effect of anisotropy in the solar wind pressure. The waves are propagating outward from the Sun, as in the ecliptic, but variance analysis indicates that the direction of propagation is radial rather than field-aligned. A significant long-period component of BORDER="0">10 hours is present.  相似文献   
199.
We report the discovery that for latitudes above BORDER="0">40°S, the observed recurring modulation of cosmic rays and anomalous nuclei occurs without the detection byUlysses of the solar wind velocity and magnetic field recurring enhancements that have, heretofore at lower latitudes, defined corotating interaction regions—i.e., the mechanism producing the recurring intensity variations >40°S appears to be located beyond the radial range ofUlysses.  相似文献   
200.
Between its launch in October 1990 and the end of 1993, approximately 160 fast collisionless shock waves were observed in the solar wind by the Ulysses space probe. During the in-ecliptic part of the mission, to February 1992, the observed shock waves were first caused mainly by solar transient events following the solar maximum and the reorganisation of the large scale coronal fields. With the decay in solar activity, relatively stable Corotating Interaction Regions (CIRs) were observed betwen 3 and 5.4 AU, each associated with at least one forwardreverse shock pair. During the out-of-ecliptic phase of the orbit, from February 1992 onwards, CIRs and shock pairs associated with them continued to dominate the observations. From July 1992, Ulysses encountered the fast solar wind flow from the newly developed southern polar coronal hole, and from May 1993 remained in the unipolar magnetic region associated with this coronal hole. At latitudes beyond 30°, CIRs were associated almost exclusively with reverse shocks only. A comprehensive list of shock waves identified in the magnetic field and solar wind plasma data from Ulysses is given in Table 1. The principal characteristics were determined mainly from the magnetic field data. General considerations concerning the determination of shock characteristics are outlined in the Introduction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号