首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2686篇
  免费   4篇
  国内免费   6篇
航空   1321篇
航天技术   923篇
综合类   9篇
航天   443篇
  2021年   18篇
  2019年   16篇
  2018年   110篇
  2017年   63篇
  2016年   40篇
  2015年   14篇
  2014年   56篇
  2013年   94篇
  2012年   56篇
  2011年   96篇
  2010年   76篇
  2009年   123篇
  2008年   142篇
  2007年   66篇
  2006年   63篇
  2005年   65篇
  2004年   67篇
  2003年   85篇
  2002年   44篇
  2001年   99篇
  2000年   49篇
  1999年   66篇
  1998年   70篇
  1997年   68篇
  1996年   65篇
  1995年   87篇
  1994年   89篇
  1993年   46篇
  1992年   52篇
  1991年   15篇
  1990年   24篇
  1989年   51篇
  1988年   32篇
  1987年   20篇
  1986年   29篇
  1985年   74篇
  1984年   70篇
  1983年   43篇
  1982年   70篇
  1981年   67篇
  1980年   17篇
  1979年   10篇
  1978年   32篇
  1977年   12篇
  1975年   25篇
  1974年   18篇
  1973年   16篇
  1972年   17篇
  1970年   9篇
  1969年   12篇
排序方式: 共有2696条查询结果,搜索用时 312 毫秒
651.
Based on the experimental data, a dependence of the minimal friction losses in cascades was obtained. A turbine stage efficiency gain as a result of cascade improvement over the last three decades of the 20th century was estimated by this dependence.  相似文献   
652.
Space plasmas are host to the electrostatic Langmuir waves and a rich range of processes associated with them. Many of such processes that are of interest in micro-scale plasma physics and magnetosphere-ionosphere physics are open to investigation via incoherent scatter plasma lines—i.e., a pair of resonant peaks in the incoherent scatter radar (ISR) spectrum, symmetrically displaced from the radar transmitting frequency by about the plasma frequency, as the signature of Langmuir waves in the ISR spectrum. There now exists a large body of literature devoted to the investigation of a number of topics in ionospheric physics via plasma line theory and observation. It is the goal of this work to provide a comprehensive review of this literature, from the early theoretical works on oscillations in magnetized plasma to the recent advances in plasma line measurements and applications. This review includes detailed theoretical discussions on the intensity and frequency displacement of plasma lines. It reviews the experimental observations of plasma lines enhanced by various sources of energy and discusses the implications of the observations in the context of ionospheric physics. The review also covers the practical aspects of plasma line measurements, from measurement techniques to the applications of plasma lines in estimating the bulk parameters of the ionosphere.  相似文献   
653.
Horseshoe orbits in the restricted three-body problem have been mostly considered in the Sun–Jupiter system and, in recent years, in the Sun–Earth system. Here, these orbits have been used to find asteroids that have orbits of this kind. We have built a planar family of horseshoe orbits in the Earth–Moon system and determined the points of planar and 1/1 vertical resonances on this family. We have presented examples of orbits generated by these spatial families.  相似文献   
654.
In this paper, a model of heat exchange and resistance in the channels with cylindrical grooves on the walls is presented. We compare the calculated data with the experimental results and give some recommendations for designers of power plants.  相似文献   
655.
Atmospheric gravity wave (AGW) is a typical phenomenon in the upper atmosphere. At mid/low latitudes, climatological sources such as unstable barometric activity in the troposphere play an important role to generate AGWs in the thermosphere. While these sources are also important at high latitudes, energy input from the magnetosphere has additional large contributions to AGW generation. This paper reviews previous studies of AGWs associated with auroral activity at high latitudes. Theoretical studies have indicated that Joule/particle heating and the Lorentz force are major processes for generating AGWs in the thermosphere. Many observations show that AGWs can propagate horizontally for thousands of km from the source region. The paper summarizes equations regarding AGW generation by Joule/particle heating and the Lorentz force, and discusses the relative importance of these two processes.  相似文献   
656.
657.
This paper is an introduction to volume 56 of the Space Science Series of ISSI, “From disks to planets—the making of planets and their proto-atmospheres”, a key subject in our quest for the origins and evolutionary paths of planets, and for the causes of their diversity. Indeed, as exoplanet discoveries progressively accumulated and their characterization made spectacular progress, it became evident that the diversity of observed exoplanets can in no way be reduced to the two classes of planets that we are used to identify in the solar system, namely terrestrial planets and gas or ice giants: the exoplanet reality is just much broader. This fact is no doubt the result of the exceptional diversity of the evolutionary paths linking planetary systems as a whole as well as individual exoplanets and their proto-atmospheres to their parent circumstellar disks: this diversity and its causes are exactly what this paper explores. For each of the main phases of the formation and evolution of planetary systems and of individual planets, we summarize what we believe we understand and what are the important open questions needing further in-depth examination, and offer some suggestions on ways towards solutions.We start with the formation mechanisms of circumstellar disks, with their gas and disk components in which chemical composition plays a very important role in planet formation. We summarize how dust accretion within the disk generates planet cores, while gas accretion on these cores can lead to the diversity of their fluid envelopes. The temporal evolution of the parent disk itself, and its final dissipation, put strong constraints on how and how far planetary formation can proceed. The radiation output of the central star also plays an important role in this whole story. This early phase of planet evolution, from disk formation to dissipation, is characterized by a co-evolution of the disk and its daughter planets. During this co-evolution, planets and their protoatmospheres not only grow, but they also migrate radially as a result of their interaction with the disk, thus moving progressively from their distance of formation to their final location. The formation of planetary fluid envelopes (proto-atmospheres and oceans), is an essential product of this planet formation scenario which strongly constrains their possible evolution towards habitability. We discuss the effects of the initial conditions in the disk, of the location, size and mass of the planetary core, of the disk lifetime and of the radiation output and activity of the central star, on the formation of these envelopes and on their relative extensions with respect to the planet core. Overall, a fraction of the planets retain the primary proto-atmosphere they initially accreted from the gas disk. For those which lose it in this early evolution, outgassing of volatiles from the planetary core and mantle, together with some contributions of volatiles from colliding bodies, give them a chance to form a “secondary” atmosphere, like that of our own Earth.When the disk finally dissipates, usually before 10 Million years of age, it leaves us with the combination of a planetary system and a debris disk, each with a specific radial distribution with respect to their parent star(s). Whereas the dynamics of protoplanetary disks is dominated by gas-solid dynamical coupling, debris disks are dominated by gravitational dynamics acting on diverse families of planetesimals. Solid-body collisions between them and giant impacts on young planetary surfaces generate a new population of gas and dust in those disks. Synergies between solar system and exoplanet studies are particularly fruitful and need to be stimulated even more, because they give access to different and complementary components of debris disks: whereas the different families of planetesimals can be extensively studied in the solar system, they remain unobserved in exoplanet systems. But, in those systems, long-wavelength telescopic observations of dust provide a wealth of indirect information about the unobserved population of planetesimals. Promising progress is being currently made to observe the gas component as well, using millimetre and sub-millimetre giant radio interferometers.Within planetary systems themselves, individual planets are the assembly of a solid body and a fluid envelope, including their planetary atmosphere when there is one. Their characteristics range from terrestrial planets through sub-Neptunes and Neptunes and to gas giants, each type covering most of the orbital distances probed by present-day techniques. With the continuous progress in detection and characterization techniques and the advent of major providers of new data like the Kepler mission, the architecture of these planetary systems can be studied more and more accurately in a statistically meaningful sense and compared to the one of our own solar system, which does not appear to be an exceptional case. Finally, our understanding of exoplanets atmospheres has made spectacular advances recently using the occultation spectroscopy techniques implemented on the currently operating space and ground-based observing facilities.The powerful new observing facilities planned for the near and more distant future will make it possible to address many of the most challenging current questions of the science of exoplanets and their systems. There is little doubt that, using this new generation of facilities, we will be able to reconstruct more and more accurately the complex evolutionary paths which link stellar genesis to the possible emergence of habitable worlds.  相似文献   
658.
Ongoing research on martian meteorites and a new set of observations of carbonate minerals provided by an unprecedented series of robotic missions to Mars in the past 15 years help define new constraints on the history of martian climate with important crosscutting themes including: the CO2 budget of Mars, the role of Mg-, Fe-rich fluids on Mars, and the interplay between carbonate formation and acidity. Carbonate minerals have now been identified in a wide range of localities on Mars as well as in several martian meteorites. The martian meteorites contain carbonates in low abundances (<1 vol.%) and with a wide range of chemistries. Carbonates have also been identified by remote sensing instruments on orbiting spacecraft in several surface locations as well as in low concentrations (2–5 wt.%) in the martian dust. The Spirit rover also identified an outcrop with 16 to 34 wt.% carbonate material in the Columbia Hills of Gusev Crater that strongly resembled the composition of carbonate found in martian meteorite ALH 84001. Finally, the Phoenix lander identified concentrations of 3–6 wt.% carbonate in the soils of the northern plains. The carbonates discovered to date do not clearly indicate the past presence of a dense Noachian atmosphere, but instead suggest localized hydrothermal aqueous environments with limited water availability that existed primarily in the early to mid-Noachian followed by low levels of carbonate formation from thin films of transient water from the late Noachian to the present. The prevalence of carbonate along with evidence for active carbonate precipitation suggests that a global acidic chemistry is unlikely and a more complex relationship between acidity and carbonate formation is present.  相似文献   
659.
A technique for studying ionospheric wavelike phenomena, primarily AGW/TID events, is developed based on the solution of the problem of radio wave propagation in ionospheric plasma disturbed by wavelike processes. A perfectly reflecting surface model is used for representing TIDs propagating at ionospheric heights. This technique is a generalization of the Frequency-and-Angular Sounding (FAS) method developed earlier for oblique TID diagnostics using transmitters of opportunity. Trial measurements were made in November 2003 with two DPS-4 systems at Millstone Hill Observatory, providing experimental validation of the developed method by comparing the results of disturbance diagnostics to those simultaneously obtained with the original (oblique) FAS method. The TID parameters recovered during the November 2003 campaign suggest that the observed disturbances predominately propagated equatorward which likely indicates their sources to be in the auroral region. The equatorward propagating AGW/TIDs are typical for disturbed geomagnetic conditions which were observed during the campaign. Implementation of the generalized FAS technique in the DPS sounder allowed development of a dedicated data acquisition system for ionospheric disturbance diagnostics. Routine measurements with the developed technique using the existing world-wide network of Digisondes (GIRO) will make it possible to conduct large-scale studies of the AGW/TID phenomena.  相似文献   
660.
Numerical results obtained based on the equations for the general theory of physically orthotropic shells are presented. These results illustrate the influence of anisotropy for mechanical and physical characteristics of material on stressed state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号