首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   256篇
  免费   0篇
  国内免费   1篇
航空   171篇
航天技术   17篇
综合类   2篇
航天   67篇
  2021年   5篇
  2019年   1篇
  2018年   67篇
  2017年   38篇
  2016年   3篇
  2015年   4篇
  2014年   7篇
  2013年   6篇
  2012年   2篇
  2011年   21篇
  2010年   12篇
  2009年   7篇
  2008年   10篇
  2007年   15篇
  2006年   4篇
  2005年   9篇
  2004年   5篇
  2003年   3篇
  2002年   4篇
  2001年   4篇
  2000年   6篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1993年   5篇
  1992年   3篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1976年   1篇
  1968年   1篇
排序方式: 共有257条查询结果,搜索用时 15 毫秒
211.
X-ray spectra of galaxy clusters are dominated by the thermal emission from the hot intracluster medium. In some cases, besides the thermal component, spectral models require additional components associated, e.g., with resonant scattering and charge exchange. The latter produces mostly underluminous fine spectral features. Detection of the extra components therefore requires high spectral resolution. The upcoming X-ray missions will provide such high resolution, and will allow spectroscopic diagnostics of clusters beyond the current simple thermal modeling. A representative science case is resonant scattering, which produces spectral distortions of the emission lines from the dominant thermal component. Accounting for the resonant scattering is essential for accurate abundance and gas motion measurements of the ICM. The high resolution spectroscopy might also reveal/corroborate a number of new spectral components, including the excitation by non-thermal electrons, the deviation from ionization equilibrium, and charge exchange from surface of cold gas clouds in clusters. Apart from detecting new features, future high resolution spectroscopy will also enable a much better measurement of the thermal component. Accurate atomic database and appropriate modeling of the thermal spectrum are therefore needed for interpreting the data.  相似文献   
212.
In this paper, we discuss the main ways of improving the aircraft aerodynamics. The results of a physical experiment are presented that is aimed to verify the theoretical results obtained earlier on the possible improvement in a seaplane wing model lift-to-drag ratio, by using a deflectable triangular extension along the wing leading edge near the wingtip. We confirm the slight effectiveness of using the wingtip leading edge triangular extensions on the nature of flow around the wing.  相似文献   
213.
JIRAM is an imager/spectrometer on board the Juno spacecraft bound for a polar orbit around Jupiter. JIRAM is composed of IR imager and spectrometer channels. Its scientific goals are to explore the Jovian aurorae and the planet’s atmospheric structure, dynamics and composition. This paper explains the characteristics and functionalities of the instrument and reports on the results of ground calibrations. It discusses the main subsystems to the extent needed to understand how the instrument is sequenced and used, the purpose of the calibrations necessary to determine instrument performance, the process for generating the commanding sequences, the main elements of the observational strategy, and the format of the scientific data that JIRAM will produce.  相似文献   
214.
The SEIS (Seismic Experiment for Interior Structure) instrument onboard the InSight mission will be the first seismometer directly deployed on the surface of Mars. From studies on the Earth and the Moon, it is well known that site amplification in low-velocity sediments on top of more competent rocks has a strong influence on seismic signals, but can also be used to constrain the subsurface structure. Here we simulate ambient vibration wavefields in a model of the shallow sub-surface at the InSight landing site in Elysium Planitia and demonstrate how the high-frequency Rayleigh wave ellipticity can be extracted from these data and inverted for shallow structure. We find that, depending on model parameters, higher mode ellipticity information can be extracted from single-station data, which significantly reduces uncertainties in inversion. Though the data are most sensitive to properties of the upper-most layer and show a strong trade-off between layer depth and velocity, it is possible to estimate the velocity and thickness of the sub-regolith layer by using reasonable constraints on regolith properties. Model parameters are best constrained if either higher mode data can be used or additional constraints on regolith properties from seismic analysis of the hammer strokes of InSight’s heat flow probe HP3 are available. In addition, the Rayleigh wave ellipticity can distinguish between models with a constant regolith velocity and models with a velocity increase in the regolith, information which is difficult to obtain otherwise.  相似文献   
215.
We analyze the complete set of in-situ meteorological data obtained from the Viking landers in the 1970s to today’s Curiosity rover to review our understanding of the modern near-surface climate of Mars, with focus on the dust, CO2 and H2O cycles and their impact on the radiative and thermodynamic conditions near the surface. In particular, we provide values of the highest confidence possible for atmospheric opacity, atmospheric pressure, near-surface air temperature, ground temperature, near-surface wind speed and direction, and near-surface air relative humidity and water vapor content. Then, we study the diurnal, seasonal and interannual variability of these quantities over a span of more than twenty Martian years. Finally, we propose measurements to improve our understanding of the Martian dust and H2O cycles, and discuss the potential for liquid water formation under Mars’ present day conditions and its implications for future Mars missions. Understanding the modern Martian climate is important to determine if Mars could have the conditions to support life and to prepare for future human exploration.  相似文献   
216.
217.
Satellite drag coefficients are a major source of uncertainty in predicting the drag force on satellites in low Earth orbit. Among other things, accurately predicting the orbit requires detailed knowledge of the satellite drag coefficient. Computational methods are an important tool in computing the drag coefficient but are too intensive for real-time and predictive applications. Therefore, analytic or empirical models that can accurately predict drag coefficients are desired. This work uses response surfaces to model drag coefficients. The response surface methodology is validated by developing a response surface model for the drag coefficient of a sphere where the closed-form solution is known. The response surface model performs well in predicting the drag coefficient of a sphere with a root mean square percentage error less than 0.3% over the entire parameter space. For more complex geometries, such as the GRACE satellite, the Hubble Space Telescope, and the International Space Station, the model errors are only slightly larger at about 0.9%, 0.6%, and 1.0%, respectively.  相似文献   
218.
Four types of optimal solutions are demonstrated to exist for transfers (time of flight is not fixed) between close near-circular coplanar orbits. One solution is realized with the help of fixed orientation of the propulsion system (PS) along a transversal in the orbital coordinate system. Another is reached at fixed orientation of the PS in the inertial coordinate system. The third and fourth types of solutions change the PS orientation in the process of executing the maneuver. Regions of existence are established for all types of solutions, and algorithms for determination of parameters of these maneuvers are suggested. The algorithms were used to calculate parameters of the maneuvers of transfer from a launching orbit to a working Sun-synchronous orbit, and to calculate the maneuvers of supporting the parameters of such an orbit in a specified range.  相似文献   
219.
The Dawn spectrometer (VIR) is a hyperspectral spectrometer with imaging capability. The design fully accomplishes Dawn’s scientific and measurement objectives. Determination of the mineral composition of surface materials in their geologic context is a primary Dawn objective. The nature of the solid compounds of the asteroid (silicates, oxides, salts, organics and ices) can be identified by visual and infrared spectroscopy using high spatial resolution imaging to map the heterogeneity of asteroid surfaces and high spectral resolution spectroscopy to determine the composition unambiguously. The VIR Spectrometer—covering the range from the near UV (0.25 μm) to the near IR (5.0 μm) and having moderate to high spectral resolution and imaging capabilities—is the appropriate instrument for the determination of the asteroid global and local properties. VIR combines two data channels in one compact instrument. The visible channel covers 0.25–1.05 μm and the infrared channel covers 1–5.0 μm. VIR is inherited from the VIRTIS mapping spectrometer (Coradini et al. in Planet. Space Sci. 46:1291–1304, 1998; Reininger et al. in Proc. SPIE 2819:66–77, 1996) on board the ESA Rosetta mission. It will be operated for more than 2 years and spend more than 10 years in space.  相似文献   
220.
Through a techno-nationalist lens, this paper will assess the growing China–European Union (EU) space partnership, and its implications for international space cooperation and competition. Techno-nationalism (jishu minzuzhuyi), the idea that technological strength is an effective determinant of national power in a harshly competitive world,3 informs both Chinese and US perceptions of China's space development. Using this lens elevates all space activities—manned, unmanned, military and scientific—to the strategic level. It is our contention that because of the increasing China–EU space partnership, the USA must re-evaluate its approach to China—away from the containment approach, which has thus far predominated, toward an approach which would offer the USA the opportunity to influence and, thereby, decrease the importance of the emerging partnership.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号