首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3907篇
  免费   5篇
  国内免费   9篇
航空   1745篇
航天技术   1446篇
综合类   11篇
航天   719篇
  2021年   31篇
  2018年   63篇
  2017年   53篇
  2016年   51篇
  2015年   22篇
  2014年   74篇
  2013年   108篇
  2012年   92篇
  2011年   164篇
  2010年   113篇
  2009年   156篇
  2008年   202篇
  2007年   115篇
  2006年   85篇
  2005年   113篇
  2004年   127篇
  2003年   127篇
  2002年   81篇
  2001年   119篇
  2000年   61篇
  1999年   86篇
  1998年   107篇
  1997年   77篇
  1996年   72篇
  1995年   109篇
  1994年   125篇
  1993年   65篇
  1992年   76篇
  1991年   32篇
  1990年   42篇
  1989年   68篇
  1988年   31篇
  1987年   26篇
  1986年   38篇
  1985年   125篇
  1984年   114篇
  1983年   93篇
  1982年   79篇
  1981年   157篇
  1980年   32篇
  1979年   35篇
  1978年   37篇
  1977年   34篇
  1976年   29篇
  1975年   34篇
  1974年   29篇
  1973年   31篇
  1972年   41篇
  1971年   22篇
  1970年   23篇
排序方式: 共有3921条查询结果,搜索用时 656 毫秒
711.
Real values of parameters for a space vehicle and its steering devices are specified by using the motion parameters measured in flight based on solving the differential equations of motion.  相似文献   
712.
The calculation of the design parameters of lifting airscrew systems with fixed and tilted rotor, including the investigation of the operation schemes of actuators for the propeller control system, is carried out.  相似文献   
713.
Self-organization is a property of dissipative nonlinear processes that are governed by a global driving force and a local positive feedback mechanism, which creates regular geometric and/or temporal patterns, and decreases the entropy locally, in contrast to random processes. Here we investigate for the first time a comprehensive number of (17) self-organization processes that operate in planetary physics, solar physics, stellar physics, galactic physics, and cosmology. Self-organizing systems create spontaneous “order out of randomness”, during the evolution from an initially disordered system to an ordered quasi-stationary system, mostly by quasi-periodic limit-cycle dynamics, but also by harmonic (mechanical or gyromagnetic) resonances. The global driving force can be due to gravity, electromagnetic forces, mechanical forces (e.g., rotation or differential rotation), thermal pressure, or acceleration of nonthermal particles, while the positive feedback mechanism is often an instability, such as the magneto-rotational (Balbus-Hawley) instability, the convective (Rayleigh-Bénard) instability, turbulence, vortex attraction, magnetic reconnection, plasma condensation, or a loss-cone instability. Physical models of astrophysical self-organization processes require hydrodynamic, magneto-hydrodynamic (MHD), plasma, or N-body simulations. Analytical formulations of self-organizing systems generally involve coupled differential equations with limit-cycle solutions of the Lotka-Volterra or Hopf-bifurcation type.  相似文献   
714.
Asteroids and comets are the remnants of the swarm of planetesimals from which the planets ultimately formed, and they retain records of processes that operated prior to and during planet formation. They are also likely the sources of most of the water and other volatiles accreted by Earth. In this review, we discuss the nature and probable origins of asteroids and comets based on data from remote observations, in situ measurements by spacecraft, and laboratory analyses of meteorites derived from asteroids. The asteroidal parent bodies of meteorites formed \(\leq 4\) Ma after Solar System formation while there was still a gas disk present. It seems increasingly likely that the parent bodies of meteorites spectroscopically linked with the E-, S-, M- and V-type asteroids formed sunward of Jupiter’s orbit, while those associated with C- and, possibly, D-type asteroids formed further out, beyond Jupiter but probably not beyond Saturn’s orbit. Comets formed further from the Sun than any of the meteorite parent bodies, and retain much higher abundances of interstellar material. CI and CM group meteorites are probably related to the most common C-type asteroids, and based on isotopic evidence they, rather than comets, are the most likely sources of the H and N accreted by the terrestrial planets. However, comets may have been major sources of the noble gases accreted by Earth and Venus. Possible constraints that these observations can place on models of giant planet formation and migration are explored.  相似文献   
715.
The advent of modernized and new global navigation satellite systems (GNSS) has enhanced the availability of satellite based positioning, navigation, and timing (PNT) solutions. Specifically, it increases redundancy and yields operational back-up or independence in case of failure or unavailability of one system. Among existing GNSS, the Chinese BeiDou system (BDS) is being developed and will consist of geostationary (GEO) satellites, inclined geosynchronous orbit (IGSO) satellites, and medium-Earth-orbit (MEO) satellites. In this contribution, a BeiDou–GPS robustness analysis is carried out for instantaneous, unaided attitude determination.  相似文献   
716.
The Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC) is a six satellite radio occultation mission that was launched in April 2006. The close proximity of these satellites during some months after launch provides a unique opportunity to evaluate the precision of Global Positioning System (GPS) radio occultation (RO) retrievals of ionospheric electron density from nearly collocated and simultaneous observations. RO data from 30 consecutive days during July and August 2006 are divided into ten groups in terms of daytime or nighttime and latitude. In all cases, the best precision values (about 1%) are found at the F peak height and they slightly degrade upwards. For all daytime groups, it is seen that electron density profiles above about 120 km height exhibit a substantial improvement in precision. Nighttime groups are rather diverse: in particular, the precision becomes better than 10% above different levels between 120 and 200 km height. Our overall results show that up to 100–200 km (depending on each group), the uncertainty associated with the precision is in the order of the measured electron density values. Even worse, the retrieved values tend sometimes to be negative. Although we cannot rely directly on electron density values at these altitudes, the shape of the profiles could be indicative of some ionospheric features (e.g. waves and sporadic E layers). Above 200 km, the profiles of precision are qualitatively quite independent from daytime or latitude. From all the nearly collocated pairs studied, only 49 exhibited a difference between line of sight angles of both RO at the F peak height larger than 10°. After analyzing them we find no clear indications of a significant representativeness error in electron density profiles due to the spherical assumption above 120 km height. Differences in precision between setting and rising GPS RO may be attributed to the modification of the processing algorithms applied to rising cases during the initial period of the COSMIC mission.  相似文献   
717.
Models are required to accurately predict mass and energy balances in a bioregenerative life support system. A modified energy cascade model was used to predict outputs of a multi-crop (tomatoes, potatoes, lettuce and strawberries) Lunar greenhouse prototype. The model performance was evaluated against measured data obtained from several system closure experiments. The model predictions corresponded well to those obtained from experimental measurements for the overall system closure test period (five months), especially for biomass produced (0.7% underestimated), water consumption (0.3% overestimated) and condensate production (0.5% overestimated). However, the model was less accurate when the results were compared with data obtained from a shorter experimental time period, with 31%, 48% and 51% error for biomass uptake, water consumption, and condensate production, respectively, which were obtained under more complex crop production patterns (e.g. tall tomato plants covering part of the lettuce production zones). These results, together with a model sensitivity analysis highlighted the necessity of periodic characterization of the environmental parameters (e.g. light levels, air leakage) in the Lunar greenhouse.  相似文献   
718.
In this paper an analysis of data coordinate systems from selenographic catalogues and space missions was carried out. The lunar macrorelief models were made on basis of the software package ASNI USTU using method of the spherical harmonic expansion. These models accurately describe the global features of the lunar figure. To construct these models the following sources of topographic information were used: “Clementine” and “KАGUYА” (Selena, Japan mission) missions, “KSC-1162” (Kazan selenocentric catalogue), “Kiev” (selenodesic catalogue), “SAI” (Chuikova (1975)), “Bills, Ferrari”, “ULCN” (The Unified Lunar Control Network 2005). Direct comparison hypsometric information “KSС-1162” catalogue data with “Clementine” mission was carried out. These researches confirmed a good agreement of the hypsometric information of compared systems. The normalized coefficients were obtained on basis of the hypsometric information expansion for eight sources. The displacement of the lunar center of mass (LCM) relatively to the lunar center of figure (LCF) was obtained by using topographic data selenodetical catalogues and space missions.  相似文献   
719.
Four soybean cultivars (‘Atlantic’, ‘Cresir’, ‘Pr91m10’ and ‘Regir’), selected through a theoretical procedure as suitable for cultivation in BLSS, were evaluated in terms of growth and production. Germination percentage and Mean Germination Time (MGT) were measured. Plants were cultivated in a growth chamber equipped with a recirculating hydroponic system (Nutrient Film Technique). Cultivation was performed under controlled environmental conditions (12 h photoperiod, light intensity 350 μmol m−2 s−1, temperature regime 26/20 °C light/dark, relative humidity 65–75%). Fertigation was performed with a standard Hoagland solution, modified for soybean specific requirements, and EC and pH were kept at 2.0 dS m−1 and 5.5 respectively.  相似文献   
720.
Cryosat-2 was designed for its primary scientific objectives, i.e. for cryosphere science. As far as oceanography is concerned, various mission design choices make it less accurate than missions designed to comply with ocean surface topography requirements such as Jason-2 or ENVISAT. Cryosat-2-specific errors are equivalent to more than 50% of the sea surface height variability over 40% of the oceans. Cryosat-2’s sampling pattern is also suboptimal for mesoscale observation because the satellite tracks from any consecutive period of 2 to 20 days (e.g. the most recent and most valuable data for near real time mesoscale observation) are aggregated in 500 km wide bands which are interleaved with 500 km wide observation gaps.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号