排序方式: 共有192条查询结果,搜索用时 31 毫秒
131.
Using the SONG detector onboard the CORONAS-F satellite, gamma-ray emission of high energies (>100 MeV) was recorded during four solar flares. In the sequential spectra of gamma rays the peculiarity caused by generation and decay of neutral pions was isolated, which made it possible to determine with a high accuracy the moments of appearance in the solar atmosphere of protons accelerated up to energies above 300 MeV. 相似文献
132.
Andrew W. Stephan Eric J. Korpela Martin M. Sirk Scott L. England Thomas J. Immel 《Space Science Reviews》2017,212(1-2):645-654
The NASA Ionospheric Connection Explorer Extreme Ultraviolet spectrograph, ICON EUV, will measure altitude profiles of the daytime extreme-ultraviolet (EUV) OII emission near 83.4 and 61.7 nm that are used to determine density profiles and state parameters of the ionosphere. This paper describes the algorithm concept and approach to inverting these measured OII emission profiles to derive the associated \(\mathrm{O}^{+}\) density profile from 150–450 km as a proxy for the electron content in the F-region of the ionosphere. The algorithm incorporates a bias evaluation and feedback step, developed at the U.S. Naval Research Laboratory using data from the Special Sensor Ultraviolet Limb Imager (SSULI) and the Remote Atmospheric and Ionospheric Detection System (RAIDS) missions, that is able to effectively mitigate the effects of systematic instrument calibration errors and inaccuracies in the original photon source within the forward model. Results are presented from end-to-end simulations that convolved simulated airglow profiles with the expected instrument measurement response to produce profiles that were inverted with the algorithm to return data products for comparison to truth. Simulations of measurements over a representative ICON orbit show the algorithm is able to reproduce hmF2 values to better than 5 km accuracy, and NmF2 to better than 12% accuracy over a 12-second integration, and demonstrate that the ICON EUV instrument and daytime ionosphere algorithm can meet the ICON science objectives which require 20 km vertical resolution in hmF2 and 18% precision in NmF2. 相似文献
133.
Rosemary Killen Gabrielle Cremonese Helmut Lammer Stefano Orsini Andrew E. Potter Ann L. Sprague Peter Wurz Maxim L. Khodachenko Herbert I. M. Lichtenegger Anna Milillo Alessandro Mura 《Space Science Reviews》2007,132(2-4):433-509
It has been speculated that the composition of the exosphere is related to the composition of Mercury’s crustal materials.
If this relationship is true, then inferences regarding the bulk chemistry of the planet might be made from a thorough exospheric
study. The most vexing of all unsolved problems is the uncertainty in the source of each component. Historically, it has been
believed that H and He come primarily from the solar wind (Goldstein, B.E., et al. in J. Geophys. Res. 86:5485–5499, 1981), Na and K come from volatilized materials partitioned between Mercury’s crust and meteoritic impactors (Hunten, D.M., et
al. in Mercury, pp. 562–612, 1988; Morgan, T.H., et al. in Icarus 74:156–170, 1988; Killen, R.M., et al. in Icarus 171:1–19, 2004b). The processes that eject atoms and molecules into the exosphere of Mercury are generally considered to be thermal vaporization,
photon-stimulated desorption (PSD), impact vaporization, and ion sputtering. Each of these processes has its own temporal
and spatial dependence. The exosphere is strongly influenced by Mercury’s highly elliptical orbit and rapid orbital speed.
As a consequence the surface undergoes large fluctuations in temperature and experiences differences of insolation with longitude.
Because there is no inclination of the orbital axis, there are regions at extreme northern and southern latitudes that are
never exposed to direct sunlight. These cold regions may serve as traps for exospheric constituents or for material that is
brought in by exogenic sources such as comets, interplanetary dust, or solar wind, etc. The source rates are dependent not
only on temperature and composition of the surface, but also on such factors as porosity, mineralogy, and space weathering.
They are not independent of each other. For instance, ion impact may create crystal defects which enhance diffusion of atoms
through the grain, and in turn enhance the efficiency of PSD. The impact flux and the size distribution of impactors affects
regolith turnover rates (gardening) and the depth dependence of vaporization rates. Gardening serves both as a sink for material
and as a source for fresh material. This is extremely important in bounding the rates of the other processes. Space weathering
effects, such as the creation of needle-like structures in the regolith, will limit the ejection of atoms by such processes
as PSD and ion-sputtering. Therefore, the use of laboratory rates in estimates of exospheric source rates can be helpful but
also are often inaccurate if not modified appropriately. Porosity effects may reduce yields by a factor of three (Cassidy,
T.A., and Johnson, R.E. in Icarus 176:499–507, 2005). The loss of all atomic species from Mercury’s exosphere other than H and He must be by non-thermal escape. The relative
rates of photo-ionization, loss of photo-ions to the solar wind, entrainment of ions in the magnetosphere and direct impact
of photo-ions to the surface are an area of active research. These source and loss processes will be discussed in this chapter. 相似文献
134.
Guanghua Zheng 《Russian Aeronautics (Iz VUZ)》2010,53(4):475-478
A convective-film system of high pressure-differential turbine blade cooling is presented. The results of calculating the thermal-hydraulic blade state using the KW3D software are given. 相似文献
135.
It is suggested that gas composition at every point of the combustion chamber exit section be characterized by the temperature values T i (“ideal” temperature) corresponding to the local values of the air-to-fuel coefficient α i under complete fuel combustion (ν comb ≈ 1). It is assumed that the values of T i are distributed over the exit section area (gas mass) linearly and the values of T imax and T imin can be determined by the experimental data on the gas temperature fields in the combustion chambers. The distribution of temperatures T i is used when it is necessary to generalize the experimental data on fuel combustion efficiency in GTE combustion chambers. 相似文献
136.
The InSight mission launches in 2018 to characterize several geophysical quantities on Mars, including the heat flow from the planetary interior. This quantity will be calculated by utilizing measurements of the thermal conductivity and the thermal gradient down to 5 meters below the Martian surface. One of the components of InSight is the Mole, which hammers into the Martian regolith to facilitate these thermal property measurements. In this paper, we experimentally investigated the effect of the Mole’s penetrating action on regolith compaction and mechanical properties. Quasi-static and dynamic experiments were run with a 2D model of the 3D cylindrical mole. Force resistance data was captured with load cells. Deformation information was captured in images and analyzed using Digitial Image Correlation (DIC). Additionally, we used existing approximations of Martian regolith thermal conductivity to estimate the change in the surrounding granular material’s thermal conductivity due to the Mole’s penetration. We found that the Mole has the potential to cause a high degree of densification, especially if the initial granular material is relatively loose. The effect on the thermal conductivity from this densification was found to be relatively small in first-order calculations though more complete thermal models incorporating this densification should be a subject of further investigation. The results obtained provide an initial estimate of the Mole’s impact on Martian regolith thermal properties. 相似文献
137.
In this review, an overview of the recent history of stochastic differential equations (SDEs) in application to particle transport problems in space physics and astrophysics is given. The aim is to present a helpful working guide to the literature and at the same time introduce key principles of the SDE approach via “toy models”. Using these examples, we hope to provide an easy way for newcomers to the field to use such methods in their own research. Aspects covered are the solar modulation of cosmic rays, diffusive shock acceleration, galactic cosmic ray propagation and solar energetic particle transport. We believe that the SDE method, due to its simplicity and computational efficiency on modern computer architectures, will be of significant relevance in energetic particle studies in the years to come. 相似文献
138.
Syun-Ichi Akasofu 《Space Science Reviews》2017,212(1-2):341-381
Auroral substorms are mostly manifestations of dissipative processes of electromagnetic energy. Thus, we consider a sequence of processes consisting of the power supply (dynamo), transmission (currents/circuits) and dissipations (auroral substorms-the end product), namely the electric current line approach. This work confirms quantitatively that after accumulating magnetic energy during the growth phase, the magnetosphere unloads the stored magnetic energy impulsively in order to stabilize itself. This work is based on our result that substorms are caused by two current systems, the directly driven (DD) current system and the unloading system (UL). The most crucial finding in this work is the identification of the UL (unloading) current system which is responsible for the expansion phase. A very tentative sequence of the processes leading to the expansion phase (the generation of the UL current system) is suggested for future discussions. This proposed sequence is not necessarily new. Individual processes involved have been considered by many, but the electric current approach can bring them together systematically and provide some new quantitative insights.
相似文献
- (1)The solar wind-magnetosphere dynamo enhances significantly the plasma sheet current when its power is increased above \(10^{18}~\mbox{erg}/\mbox{s}\) (\(10^{11}\) w).
- (2)The magnetosphere accumulates magnetic energy during the growth phase, because the ionosphere cannot dissipate the increasing power because of a low conductivity. As a result, the magnetosphere is inflated, accumulating magnetic energy.
- (3)When the power reaches \(3\mbox{--}5\times 10^{18}~\mbox{erg}/\mbox{s}\) (\(3\mbox{--}5\times 10^{11}\) w) for about one hour and the stored magnetic energy reaches \(3\mbox{--}5\times10^{22}\) ergs (\(10^{15}\) J), the magnetosphere begins to develop perturbations caused by current instabilities (the current density \({\approx}3\times 10^{-12}~\mbox{A}/\mbox{cm}^{2}\) and the total current \({\approx}10^{6}~\mbox{A}\) at 6 Re). As a result, the plasma sheet current is reduced.
- (4)The magnetosphere is thus deflated. The current reduction causes \(\partial B/\partial t > 0\) in the main body of the magnetosphere, producing an earthward electric field. As it is transmitted to the ionosphere, it becomes equatorward-directed electric field which drives both Pedersen and Hall currents and thus generates the UL current system.
- (5)A significant part of the magnetic energy is accumulated in the main body of the magnetosphere (the inner plasma sheet) between 4 Re and 10 Re, because the power (Poynting flux \([ \boldsymbol{E} \times \boldsymbol{B} ])\) is mainly directed toward this region which can hold the substorm energy.
- (6)The substorm intensity depends on the location of the energy accumulation (between 4 Re and 10 Re), the closer the location to the earth, the more intense substorms becomes, because the capacity of holding the energy is higher at closer distances. The convective flow toward the earth brings both the ring current and the plasma sheet current closer when the dynamo power becomes higher.
139.
John M. Harlander Christoph R. Englert Charles M. Brown Kenneth D. Marr Ian J. Miller Vaz Zastera Bernhard W. Bach Stephen B. Mende 《Space Science Reviews》2017,212(1-2):601-613
The design and laboratory tests of the interferometers for the Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument which measures thermospheric wind and temperature for the NASA-sponsored Ionospheric Connection (ICON) Explorer mission are described. The monolithic interferometers use the Doppler Asymmetric Spatial Heterodyne (DASH) Spectroscopy technique for wind measurements and a multi-element photometer approach to measure thermospheric temperatures. The DASH technique and overall optical design of the MIGHTI instrument are described in an overview followed by details on the design, element fabrication, assembly, laboratory tests and thermal control of the interferometers that are the heart of MIGHTI. 相似文献
140.
Neutrinos are fundamental particles in the collapse of massive stars. Because of their weakly interacting nature, neutrinos can travel undisturbed through the stellar core and be direct probes of the still uncertain and fascinating supernova mechanism. Intriguing recent developments on the role of neutrinos during the stellar collapse are reviewed, as well as our current understanding of the flavor conversions in the stellar envelope. The detection perspectives of the next burst and of the diffuse supernova background will be also outlined. High-energy neutrinos in the GeV-PeV range can follow the MeV neutrino emission. Various scenarios concerning the production of high-energy neutrinos are discussed. 相似文献