全文获取类型
收费全文 | 67篇 |
免费 | 1篇 |
专业分类
航空 | 33篇 |
航天技术 | 11篇 |
综合类 | 2篇 |
航天 | 22篇 |
出版年
2019年 | 1篇 |
2018年 | 1篇 |
2015年 | 1篇 |
2014年 | 4篇 |
2013年 | 1篇 |
2012年 | 1篇 |
2011年 | 2篇 |
2010年 | 2篇 |
2009年 | 3篇 |
2008年 | 9篇 |
2007年 | 6篇 |
2006年 | 2篇 |
2005年 | 3篇 |
2004年 | 2篇 |
2003年 | 5篇 |
2000年 | 4篇 |
1998年 | 1篇 |
1996年 | 2篇 |
1995年 | 3篇 |
1993年 | 2篇 |
1992年 | 1篇 |
1990年 | 2篇 |
1989年 | 3篇 |
1987年 | 1篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1982年 | 2篇 |
1968年 | 1篇 |
排序方式: 共有68条查询结果,搜索用时 0 毫秒
51.
Characteristics of shocks in the solar corona,as inferred from radio,optical, and theoretical investigations 总被引:1,自引:0,他引:1
Solar radio bursts of spectral type II provide one of the chief diagnostics for the propagation of shocks through the solar corona. Radio data on the shocks are compared with computer models for propagation of fast-mode MHD shocks through the solar corona. Data on coronal shocks and high-velocity ejecta from solar flares are then discussed in terms of a general model consisting of three main velocity regimes.An invited paper presented at STIP Workshop on Shock Waves in the Solar Corona and Interplanetary Space, 15–19 June, 1980, Smolenice, Czechoslovakia. 相似文献
52.
The Mercury Dual Imaging System on the MESSENGER Spacecraft 总被引:1,自引:0,他引:1
S. Edward Hawkins III John D. Boldt Edward H. Darlington Raymond Espiritu Robert E. Gold Bruce Gotwols Matthew P. Grey Christopher D. Hash John R. Hayes Steven E. Jaskulek Charles J. Kardian Jr. Mary R. Keller Erick R. Malaret Scott L. Murchie Patricia K. Murphy Keith Peacock Louise M. Prockter R. Alan Reiter Mark S. Robinson Edward D. Schaefer Richard G. Shelton Raymond E. Sterner II Howard W. Taylor Thomas R. Watters Bruce D. Williams 《Space Science Reviews》2007,131(1-4):247-338
The Mercury Dual Imaging System (MDIS) on the MESSENGER spacecraft will provide critical measurements tracing Mercury’s origin
and evolution. MDIS consists of a monochrome narrow-angle camera (NAC) and a multispectral wide-angle camera (WAC). The NAC
is a 1.5° field-of-view (FOV) off-axis reflector, coaligned with the WAC, a four-element refractor with a 10.5° FOV and 12-color
filter wheel. The focal plane electronics of each camera are identical and use a 1,024×1,024 Atmel (Thomson) TH7888A charge-coupled
device detector. Only one camera operates at a time, allowing them to share a common set of control electronics. The NAC and
the WAC are mounted on a pivoting platform that provides a 90° field-of-regard, extending 40° sunward and 50° anti-sunward
from the spacecraft +Z-axis—the boresight direction of most of MESSENGER’s instruments. Onboard data compression provides capabilities for pixel
binning, remapping of 12-bit data into 8 bits, and lossless or lossy compression. MDIS will acquire four main data sets at
Mercury during three flybys and the two-Mercury-solar-day nominal mission: a monochrome global image mosaic at near-zero emission
angles and moderate incidence angles, a stereo-complement map at off-nadir geometry and near-identical lighting, multicolor
images at low incidence angles, and targeted high-resolution images of key surface features. These data will be used to construct
a global image base map, a digital terrain model, global maps of color properties, and mosaics of high-resolution image strips.
Analysis of these data will provide information on Mercury’s impact history, tectonic processes, the composition and emplacement
history of volcanic materials, and the thickness distribution and compositional variations of crustal materials. This paper
summarizes MDIS’s science objectives and technical design, including the common payload design of the MDIS data processing
units, as well as detailed results from ground and early flight calibrations and plans for Mercury image products to be generated
from MDIS data. 相似文献
53.
Planetary upper atmospheres-coexisting thermospheres and ionospheres-form an important boundary between the planet itself
and interplanetary space. The solar wind and radiation from the Sun may react with the upper atmosphere directly, as in the
case of Venus. If the planet has a magnetic field, however, such interactions are mediated by the magnetosphere, as in the
case of the Earth. All of the Solar System’s giant planets have magnetic fields of various strengths, and interactions with
their space environments are thus mediated by their respective magnetospheres. This article concentrates on the consequences
of magnetosphere-atmosphere interactions for the physical conditions of the thermosphere and ionosphere. In particular, we
wish to highlight important new considerations concerning the energy balance in the upper atmosphere of Jupiter and Saturn,
and the role that coupling between the ionosphere and thermosphere may play in establishing and regulating energy flows and
temperatures there. This article also compares the auroral activity of Earth, Jupiter, Saturn and Uranus. The Earth’s behaviour
is controlled, externally, by the solar wind. But Jupiter’s is determined by the co-rotation or otherwise of the equatorial
plasmasheet, which is internal to the planet’s magnetosphere. Despite being rapid rotators, like Jupiter, Saturn and Uranus
appear to have auroral emissions that are mainly under solar (wind) control. For Jupiter and Saturn, it is shown that Joule
heating and “frictional” effects, due to ion-neutral coupling can produce large amounts of energy that may account for their
high exospheric temperatures. 相似文献
54.
Certain meteoritical inclusions contain evidence for the existence of short-lived radioactivities such as 26Al and 41Ca at the time of their formation 4.566 billion years ago. Because the half-lives of these nuclides are so short, this evidence requires that no more than about a million years elapsed between their nucleosynthesis and their inclusion in cm-sized solids in the solar nebula. This abbreviated time span can be explained if these nuclides were synthesized in a stellar source such as a supernova, and were then transported across the interstellar medium by the resulting shock wave, which then triggered the gravitational collapse of the presolar molecular cloud core. Detailed 2D and 3D numerical hydrodynamical models are reviewed and show that such a scenario is consistent with the time scale constraint, and with the need to both trigger collapse and to inject shock-wave matter into the collapsing protostellar cloud and onto the protoplanetary disk formed by the collapse. This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
55.
The New Horizons Spacecraft 总被引:1,自引:0,他引:1
Glen H. Fountain David Y. Kusnierkiewicz Christopher B. Hersman Timothy S. Herder Thomas B. Coughlin William C. Gibson Deborah A. Clancy Christopher C. DeBoy T. Adrian Hill James D. Kinnison Douglas S. Mehoke Geffrey K. Ottman Gabe D. Rogers S. Alan Stern James M. Stratton Steven R. Vernon Stephen P. Williams 《Space Science Reviews》2008,140(1-4):23-47
The New Horizons spacecraft was launched on 19 January 2006. The spacecraft was designed to provide a platform for seven instruments designated by the science team to collect and return data from Pluto in 2015. The design meets the requirements established by the National Aeronautics and Space Administration (NASA) Announcement of Opportunity AO-OSS-01. The design drew on heritage from previous missions developed at The Johns Hopkins University Applied Physics Laboratory (APL) and other missions such as Ulysses. The trajectory design imposed constraints on mass and structural strength to meet the high launch acceleration consistent with meeting the AO requirement of returning data prior to the year 2020. The spacecraft subsystems were designed to meet tight resource allocations (mass and power) yet provide the necessary control and data handling finesse to support data collection and return when the one-way light time during the Pluto fly-by is 4.5 hours. Missions to the outer regions of the solar system (where the solar irradiance is 1/1000 of the level near the Earth) require a radioisotope thermoelectric generator (RTG) to supply electrical power. One RTG was available for use by New Horizons. To accommodate this constraint, the spacecraft electronics were designed to operate on approximately 200 W. The travel time to Pluto put additional demands on system reliability. Only after a flight time of approximately 10 years would the desired data be collected and returned to Earth. This represents the longest flight duration prior to the return of primary science data for any mission by NASA. The spacecraft system architecture provides sufficient redundancy to meet this requirement with a probability of mission success of greater than 0.85. The spacecraft is now on its way to Pluto, with an arrival date of 14 July 2015. Initial in-flight tests have verified that the spacecraft will meet the design requirements. 相似文献
56.
Des Marais DJ Allamandola LJ Benner SA Boss AP Deamer D Falkowski PG Farmer JD Hedges SB Jakosky BM Knoll AH Liskowsky DR Meadows VS Meyer MA Pilcher CB Nealson KH Spormann AM Trent JD Turner WW Woolf NJ Yorke HW 《Astrobiology》2003,3(2):219-235
The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: How does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own solar system, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high-priority efforts for the next 3-5 years. These 18 objectives are being integrated with NASA strategic planning. 相似文献
57.
Alan M. Levine Hale Bradt Edward H. Morgan Ron Remillard The MIT/GSFC ASM Team 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2006,38(12):2970-2975
Selected results from the Rossi X-ray Timing Explorer All-Sky Monitor are presented to illustrate the phenomenology of the light curves. The sensitivity to periodic intensity variations is indicated by the folded light curve of AM Her. The gray line between transient and persistent sources is emphasized. Light curves of a range of systems comprising black holes or neutron stars and low and high mass companion stars show that the behavior of these systems is often, but not always, characteristic. 相似文献
58.
Alan F. M. Moorwood 《Space Science Reviews》1996,77(3-4):303-366
Bursts of massive star formation can temporarily dominate the luminosity of galaxies spanning a wide range of morphological types. This review is concerned primarily with such events in the central 1 kpc region of spiral galaxies which result from bar driven inflows of gas triggered by interactions or mergers. Most of the stellar radiant luminosity of such bursts is absorbed by dust and re-emitted in the far-infrared and is accompanied by radio and X-ray emission from supernova remnants which can also act collectively to drive galaxy scale outflows. Both evolutionary stellar models and estimates of the gas depletion times are consistent with typical burst durations of 107–8 yr. Spatially-resolved studies of nearby starburst galaxies reveal that the activity is distributed over many individual star forming complexes within rings and other structures organized by interactions between bars and the disc over a range of scales. More distant and extreme examples associated with mergers of massive spirals have luminosities > 1013
L
and molecular gas masses > 1010
M
implying star formation rates > 1000 M
yr–1 which can only be sustained for 107 yr. In the most luminous merging systems, however, the relative importance of starburst and AGN activity and their possible evolutionary connection is still a hotly debated issue. Also controversial are suggestions that starbursts in addition to a black hole are required to account for the properties of AGNs or that starbursts alone may be sufficient under certain conditions. In a wider context, starbursts must clearly have played an important role in galaxy formation and evolution at earlier times. Recent detections of high redshift galaxies show that star formation was underway at z 4 but do not support a continuing increase of the strong evolution in the co-moving star formation density seen out to z l. Primeval starburst pre-cursors of spheroidal systems also remain elusive. The most distant candidates are radio galaxies and quasars at z = 4–5 and a possible population of objects responsible for an isotropic sub-mm wave background tentatively claimed to have been detected by the COBE satellite. 相似文献
59.
60.
Alan Steinberg 《Space Policy》2011,27(4):240-246
Is the government responsive to public opinion of space policy? In 1995, Stimson et al. demonstrated that changes in domestic public policy were in response to changes in public opinion. Ten years later, Jacobs and Page demonstrated that foreign policy was not responsive to public opinion, and instead responds to the opinion of business leaders. This research builds off these seminal works to explore who influences space policy. Findings suggest that the public supports the idea of space exploration, while also feeling that spending on space exploration is “too high.” Therefore, the government appears to be giving the people exactly what they want in regards to NASA’s budget – more money each year – but at the same time a smaller percentage of the federal budget. 相似文献