首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
航空   6篇
航天技术   6篇
综合类   1篇
航天   8篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2004年   1篇
  2003年   1篇
  1998年   1篇
  1995年   1篇
  1985年   3篇
  1969年   1篇
排序方式: 共有21条查询结果,搜索用时 375 毫秒
11.
The alpha-particle X-ray spectrometer (APXS) for the Mars Science Laboratory (MSL) mission was calibrated for routine analysis of: Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Zn, Br, Rb, Sr, and Y. The following elements were also calibrated, but may be too low to be measured (10s–100s ppm) for their usual abundance on Mars: V, Cu, Ga, As, Se and W. An extensive suite of geological reference materials, supplemented by pure chemical elements and compounds was used. Special attention was paid to include phyllosilicates, sulfates and a broad selection of basalts as these are predicted minerals and rocks at the Gale Crater landing site. The calibration approach is from first principles, using fundamental physics parameters and an assumed homogeneous sample matrix to calculate expected elemental signals for a given instrument setup and sample composition. Resulting concentrations for most elements accord with expected values. Deviations in elements of lower atomic number (Na, Mg, Al) indicate significant influences of mineral phases, especially in basalts, ultramafic rocks and trachytes. The systematics of these deviations help us to derive empirical, iterative corrections for different rock groups, based on a preliminary APXS analysis which assumes a homogeneous sample. These corrections have the potential to significantly improve the accuracy of APXS analyses, especially when other MSL instrument results, such as the X-ray diffraction data from CheMin, are included in the overall analysis process.  相似文献   
12.
本文应用粒子像测速技术(PIV)和激光散斑测速技术(LSV),对Rayleigh-Benard对流流动进行测量。说明这两种技术原理和数据处理方法是相同的,他们的区别取决于源密度(S.D.)。当S.D.≤1时,是粒子像模式,当S.D.>1时,则呈现激光散斑模式。实验表明,三次光脉冲系统比二次光脉冲系统在测量信噪比方面改善很多。  相似文献   
13.
14.
Melott AL  Thomas BC 《Astrobiology》2011,11(4):343-361
Cosmic radiation backgrounds are a constraint on life, and their distribution will affect the Galactic Habitable Zone. Life on Earth has developed in the context of these backgrounds, and characterizing event rates will elaborate the important influences. This in turn can be a base for comparison with other potential life-bearing planets. In this review, we estimate the intensities and rates of occurrence of many kinds of strong radiation bursts by astrophysical entities, ranging from gamma-ray bursts at cosmological distances to the Sun itself. Many of these present potential hazards to the biosphere; on timescales long compared with human history, the probability of an event intense enough to disrupt life on the land surface or in the oceans becomes large. Both photons (e.g., X-rays) and high-energy protons and other nuclei (often called "cosmic rays") constitute hazards. For either species, one of the mechanisms that comes into play even at moderate intensities is the ionization of Earth's atmosphere, which leads through chemical changes (specifically, depletion of stratospheric ozone) to increased ultraviolet B flux from the Sun reaching the surface. UVB is extremely hazardous to most life due to its strong absorption by the genetic material DNA and subsequent breaking of chemical bonds. This often leads to mutation or cell death. It is easily lethal to the microorganisms that lie at the base of the food chain in the ocean. We enumerate the known sources of radiation and characterize their intensities at Earth and rates or upper limits on these quantities. When possible, we estimate a "lethal interval," our best estimate of how often a major extinction-level event is probable given the current state of knowledge; we base these estimates on computed or expected depletion of stratospheric ozone. In general, moderate-level events are dominated by the Sun, but the far more severe infrequent events are probably dominated by gamma-ray bursts and supernovae. We note for the first time that so-called "short-hard" gamma-ray bursts are a substantial threat, comparable in magnitude to supernovae and greater than that of the higher-luminosity long bursts considered in most past work. Given their precursors, short bursts may come with little or no warning.  相似文献   
15.
From a critical comparison and synthesis of data from the four Pioneer Venus Probes, the Pioneer Venus Orbiter, and the Venera 10, 12, and 13 landers, models of the lower and middle atmosphere of Venus are derived. The models are consistent with the data sets within the measurement uncertainties and established variability of the atmosphere. The models represent the observed variations of state properties with latitude, and preserve the observed static stability. The rationale and the approach used to derive the models are discussed, and the remaining uncertainties are estimated.  相似文献   
16.
The Gravity field and steady-state Ocean Circulation Explorer (GOCE) was the first European Space Agency’s (ESA) Earth Explorer core mission. Through its extremely low, about 260?km above the Earth, circular, sun-synchronous orbit, the satellite gained high spatial resolution and accuracy gravity gradient, and ocean circulation data. Global Positioning System (GPS) receivers, mounted on the spacecraft, allowed the determination of reduced-dynamic and kinematic GOCE orbits, whereas Laser Retroreflector Array (LRA) dedicated to Satellite Laser Ranging (SLR) allowed an independent validation of GPS-derived orbits. In this paper, residuals between different GPS-based orbit types and SLR observations are used to investigate the sensitivity and the influence of solar, geomagnetic, and ionospheric activities on the quality of kinematic and reduced-dynamic GOCE orbits. We also analyze the quality of data provided by individual SLR sites, by detecting time biases using ascending and descending sun-synchronous GOCE orbit passes, and the residual analysis of the measurement characteristics, i.e., the dependency of SLR residuals as a function of nadir and horizontal angles. Results show a substantial vulnerability of kinematic orbit solutions to the solar F10.7 index and the ionospheric activity measured by the variations of the Total Electron Content (TEC) values. The sensitivity of kinematic orbits to the three-hour-range KP index is rather minor. The reduced-dynamic orbits are almost insensitive to indices describing ionospheric, solar, and geomagnetic activities. The investigation of individual SLR sites shows that some of them are affected by time bias errors, whereas other demonstrate systematics, such as a dependency between observation residuals and the satellite nadir angle or the horizontal azimuth angle from the SLR station to the direction of the satellite.  相似文献   
17.
In this work, we evaluate the exploration of the Solar system by ad hoc wireless sensor networks (WSN), i.e., networks where all nodes (either moving or stationary) can both provide and relay data. The two aspects of self-organization and localization are the major challenges to achieve a reliable network for a variety of missions. We point out the diversity of environmental and operational constrains that WSN used for space exploration would face.We evaluate two groups of scenarios consisting in static or moving sensing nodes that can be either located on the ground or in the atmosphere of a Solar-system object. These scenarios enable collecting data simultaneously over a large surface or volume.We consider physical and chemical sensing of the atmosphere, surface and soil using such networks. Emerging technologies such as nodes localization techniques are reviewed. Finally, we compare the specific requirements of WSN for space exploration with those of WSN designed for terrestrial applications.  相似文献   
18.
The New Horizons Spacecraft   总被引:1,自引:0,他引:1  
The New Horizons spacecraft was launched on 19 January 2006. The spacecraft was designed to provide a platform for seven instruments designated by the science team to collect and return data from Pluto in 2015. The design meets the requirements established by the National Aeronautics and Space Administration (NASA) Announcement of Opportunity AO-OSS-01. The design drew on heritage from previous missions developed at The Johns Hopkins University Applied Physics Laboratory (APL) and other missions such as Ulysses. The trajectory design imposed constraints on mass and structural strength to meet the high launch acceleration consistent with meeting the AO requirement of returning data prior to the year 2020. The spacecraft subsystems were designed to meet tight resource allocations (mass and power) yet provide the necessary control and data handling finesse to support data collection and return when the one-way light time during the Pluto fly-by is 4.5 hours. Missions to the outer regions of the solar system (where the solar irradiance is 1/1000 of the level near the Earth) require a radioisotope thermoelectric generator (RTG) to supply electrical power. One RTG was available for use by New Horizons. To accommodate this constraint, the spacecraft electronics were designed to operate on approximately 200 W. The travel time to Pluto put additional demands on system reliability. Only after a flight time of approximately 10 years would the desired data be collected and returned to Earth. This represents the longest flight duration prior to the return of primary science data for any mission by NASA. The spacecraft system architecture provides sufficient redundancy to meet this requirement with a probability of mission success of greater than 0.85. The spacecraft is now on its way to Pluto, with an arrival date of 14 July 2015. Initial in-flight tests have verified that the spacecraft will meet the design requirements.  相似文献   
19.
The Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment   总被引:1,自引:0,他引:1  
The Diviner Lunar Radiometer Experiment on NASA’s Lunar Reconnaissance Orbiter will be the first instrument to systematically map the global thermal state of the Moon and its diurnal and seasonal variability. Diviner will measure reflected solar and emitted infrared radiation in nine spectral channels with wavelengths ranging from 0.3 to 400 microns. The resulting measurements will enable characterization of the lunar thermal environment, mapping surface properties such as thermal inertia, rock abundance and silicate mineralogy, and determination of the locations and temperatures of volatile cold traps in the lunar polar regions.  相似文献   
20.
Autonomous control has an increasing role in Earth and Space based applications. High level autonomy can greatly improve planetary exploration and is, in many cases, essential. It has been suggested during the Mars cave exploration programme, that an effective way to explore a larger surface area would be the use of many, small and fully autonomous robots. However, there are many challenges to overcome if such a swarm exploration programme is to be implemented. This paper summarises these challenges and focuses on one of the most crucial one: strategy. Many effective group exploration behaviours can be observed in nature, most of which are optimised to work with agents that have limited capabilities as individuals. For this paper a computer program has been written to simulate the way bees search for new hives and investigate whenever it is an optimal method to search for cave entrances on Mars. It has been found that this method, using simple autonomous robots which can be constructed using available technologies, could greatly improve the speed and range of a planetary exploration mission. The simulation results show that 50 swarm robots can cover an area of over 300 meters square completely in 5 sols while they are searching for cave entrances and returning results to the Lander which is a major performance improvement on any previous mission. Furthermore areas of interests found by the explorers are sorted in order of importance automatically and without the need of computational analysis, hence larger quantities of data were collected from the more important areas. Therefore the system – just like a hive of bees – can make a complex decision easily and quickly to find the place which matches the required criteria best. Using a high performance search strategy such as the one described in this paper is crucial if we plan to search for important resources or even life on Mars and other bodies in the solar system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号