首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   0篇
航空   24篇
航天技术   13篇
综合类   1篇
航天   9篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   4篇
  2007年   1篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2000年   1篇
  1998年   3篇
  1997年   3篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1989年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1980年   2篇
  1969年   1篇
  1967年   1篇
排序方式: 共有47条查询结果,搜索用时 250 毫秒
21.
Melott AL  Thomas BC 《Astrobiology》2011,11(4):343-361
Cosmic radiation backgrounds are a constraint on life, and their distribution will affect the Galactic Habitable Zone. Life on Earth has developed in the context of these backgrounds, and characterizing event rates will elaborate the important influences. This in turn can be a base for comparison with other potential life-bearing planets. In this review, we estimate the intensities and rates of occurrence of many kinds of strong radiation bursts by astrophysical entities, ranging from gamma-ray bursts at cosmological distances to the Sun itself. Many of these present potential hazards to the biosphere; on timescales long compared with human history, the probability of an event intense enough to disrupt life on the land surface or in the oceans becomes large. Both photons (e.g., X-rays) and high-energy protons and other nuclei (often called "cosmic rays") constitute hazards. For either species, one of the mechanisms that comes into play even at moderate intensities is the ionization of Earth's atmosphere, which leads through chemical changes (specifically, depletion of stratospheric ozone) to increased ultraviolet B flux from the Sun reaching the surface. UVB is extremely hazardous to most life due to its strong absorption by the genetic material DNA and subsequent breaking of chemical bonds. This often leads to mutation or cell death. It is easily lethal to the microorganisms that lie at the base of the food chain in the ocean. We enumerate the known sources of radiation and characterize their intensities at Earth and rates or upper limits on these quantities. When possible, we estimate a "lethal interval," our best estimate of how often a major extinction-level event is probable given the current state of knowledge; we base these estimates on computed or expected depletion of stratospheric ozone. In general, moderate-level events are dominated by the Sun, but the far more severe infrequent events are probably dominated by gamma-ray bursts and supernovae. We note for the first time that so-called "short-hard" gamma-ray bursts are a substantial threat, comparable in magnitude to supernovae and greater than that of the higher-luminosity long bursts considered in most past work. Given their precursors, short bursts may come with little or no warning.  相似文献   
22.
he Swift Gamma-Ray Explorer is designed to make prompt multiwavelength observations of gamma-ray bursts (GRBs) and GRB afterglows. The X-ray telescope (XRT) enables Swift to determine GRB positions with a few arcseconds accuracy within 100 s of the burst onset. The XRT utilizes a mirror set built for JET-X and an XMM-Newton/EPIC MOS CCD detector to provide a sensitive broad-band (0.2–10 keV) X-ray imager with effective area of > 120 cm2 at 1.5 keV, field of view of 23.6 × 23.6 arcminutes, and angular resolution of 18 arcseconds (HPD). The detection sensitivity is 2×10−14 erg cm−2 s−1 in 104 s. The instrument is designed to provide automated source detection and position reporting within 5 s of target acquisition. It can also measure the redshifts of GRBs with Fe line emission or other spectral features. The XRT operates in an auto-exposure mode, adjusting the CCD readout mode automatically to optimize the science return for each frame as the source intensity fades. The XRT will measure spectra and lightcurves of the GRB afterglow beginning about a minute after the burst and will follow each burst for days or weeks. Dedicated to David J. Watson, in memory of his valuable contributions to this instrument.  相似文献   
23.
Hill HG  Nuth JA 《Astrobiology》2003,3(2):291-304
The synthesis of important prebiotic molecules is fundamentally reliant on basic starting ingredients: water, organic species [e.g., methane (CH(4))], and reduced nitrogen compounds [e.g., ammonia (NH(3)), methyl cyanide (CH(3)CN) etc.]. However, modern studies conclude that the primordial Earth's atmosphere was too rich in CO, CO(2), and water to permit efficient synthesis of such reduced molecules as envisioned by the classic Miller-Urey experiment. Other proposed sources of terrestrial nitrogen reduction, like those within submarine vent systems, also seem to be inadequate sources of chemically reduced C-H-O-N compounds. Here, we demonstrate that nebular dust analogs have impressive catalytic properties for synthesizing prebiotic molecules. Using a catalyst analogous to nebular iron silicate condensate, at temperatures ranging from 500K to 900K, we catalyzed both the Fischer-Tropsch conversion of CO and H(2) to methane and water, and the corresponding Haber-Bosch synthesis of ammonia from N(2) and H(2). Remarkably, when CO, N(2), and H(2) were allowed to react simultaneously, these syntheses also yielded nitrogen-containing organics such as methyl amine (CH(3)NH(2)), acetonitrile (CH(3)CN), and N-methyl methylene imine (H(3)CNCH(2)). A fundamental consequence of this work for astrobiology is the potential for a natural chemical pathway to produce complex chemical building blocks of life throughout our own Solar System and beyond.  相似文献   
24.
The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) comprises the hardware and accompanying science investigation on the New Horizons spacecraft to measure pick-up ions from Pluto’s outgassing atmosphere. To the extent that Pluto retains its characteristics similar to those of a “heavy comet” as detected in stellar occultations since the early 1980s, these measurements will characterize the neutral atmosphere of Pluto while providing a consistency check on the atmospheric escape rate at the encounter epoch with that deduced from the atmospheric structure at lower altitudes by the ALICE, REX, and SWAP experiments on New Horizons. In addition, PEPSSI will characterize any extended ionosphere and solar wind interaction while also characterizing the energetic particle environment of Pluto, Charon, and their associated system. First proposed for development for the Pluto Express mission in September 1993, what became the PEPSSI instrument went through a number of development stages to meet the requirements of such an instrument for a mission to Pluto while minimizing the required spacecraft resources. The PEPSSI instrument provides for measurements of ions (with compositional information) and electrons from 10 s of keV to ~1 MeV in a 160°×12° fan-shaped beam in six sectors for 1.5 kg and ~2.5 W.  相似文献   
25.
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft was designed and constructed to withstand the harsh environments associated with achieving and operating in Mercury orbit. The system can be divided into eight subsystems: structures and mechanisms (e.g., the composite core structure, aluminum launch vehicle adapter, and deployables), propulsion (e.g., the state-of-the-art titanium fuel tanks, thruster modules, and associated plumbing), thermal (e.g., the ceramic-cloth sunshade, heaters, and radiators), power (e.g., solar arrays, battery, and controlling electronics), avionics (e.g., the processors, solid-state recorder, and data handling electronics), software (e.g., processor-supported code that performs commanding, data handling, and spacecraft control), guidance and control (e.g., attitude sensors including star cameras and Sun sensors integrated with controllers including reaction wheels), radio frequency telecommunications (e.g., the spacecraft antenna suites and supporting electronics), and payload (e.g., the science instruments and supporting processors). This system architecture went through an extensive (nearly four-year) development and testing effort that provided the team with confidence that all mission goals will be achieved. Larry E. Mosher passed away during the preparation of this paper.  相似文献   
26.
Deployable space structures are being built from thin-walled fiber-reinforced polymer composite materials due to their high specific strength, high specific stiffness, and designed bistability. However, the inherent viscoelastic behavior of the resin matrix can cause dimensional instability when the composite is stored under strain. The extended time of stowage between assembly and deployment in space can result in performance degradation and in the worst case, mission failure. In this study, the viscoelastic properties of candidate commercial polymers consisting of difunctional and tetrafunctional epoxies and thermoplastic and thermosetting polyimides were evaluated for deployable boom structures of solar sails. Stress relaxation master curves of the candidate polymers were used to predict the relaxation that would occur in 1 year at room temperature under relatively low strains of about 0.1%. A bismaleimide (BMI) showed less stress relaxation (about 20%) than the baseline novolac epoxy (about 50%). Carbon fiber composites fabricated with the BMI resin showed a 44% improvement in resistance to relaxation compared to the baseline epoxy composite.  相似文献   
27.
The Gravity field and steady-state Ocean Circulation Explorer (GOCE) was the first European Space Agency’s (ESA) Earth Explorer core mission. Through its extremely low, about 260?km above the Earth, circular, sun-synchronous orbit, the satellite gained high spatial resolution and accuracy gravity gradient, and ocean circulation data. Global Positioning System (GPS) receivers, mounted on the spacecraft, allowed the determination of reduced-dynamic and kinematic GOCE orbits, whereas Laser Retroreflector Array (LRA) dedicated to Satellite Laser Ranging (SLR) allowed an independent validation of GPS-derived orbits. In this paper, residuals between different GPS-based orbit types and SLR observations are used to investigate the sensitivity and the influence of solar, geomagnetic, and ionospheric activities on the quality of kinematic and reduced-dynamic GOCE orbits. We also analyze the quality of data provided by individual SLR sites, by detecting time biases using ascending and descending sun-synchronous GOCE orbit passes, and the residual analysis of the measurement characteristics, i.e., the dependency of SLR residuals as a function of nadir and horizontal angles. Results show a substantial vulnerability of kinematic orbit solutions to the solar F10.7 index and the ionospheric activity measured by the variations of the Total Electron Content (TEC) values. The sensitivity of kinematic orbits to the three-hour-range KP index is rather minor. The reduced-dynamic orbits are almost insensitive to indices describing ionospheric, solar, and geomagnetic activities. The investigation of individual SLR sites shows that some of them are affected by time bias errors, whereas other demonstrate systematics, such as a dependency between observation residuals and the satellite nadir angle or the horizontal azimuth angle from the SLR station to the direction of the satellite.  相似文献   
28.
The drive for greater cost-effectiveness and improved safety/security in an environment of increasing air movements calls for improved availability of accurate and consistent flight data to stakeholder systems. Studies conducted by EUROCONTROL in 2001-2003 indicate significant levels of inconsistency between flight data available to aircraft operators, air traffic control (ATC), air traffic flow management (ATFM), airports and military systems, causing unnecessary workload, inefficient use of resources, and unnecessary delays. Eurocontrol's new flight data interoperability concept is intended to resolve this problem. Having passed through the initial feasibility phase, this concept is now entering the development phase, in which it will become the basis for the development of a draft interoperability standard to be used in Europe for the specifications of new flight data processing systems deployed from 2007 onwards, and potentially to be proposed to the International Civil Aviation Organisation (ICAO) for global standardisation.  相似文献   
29.
Residual biomass from hydroponic culture of sweetpotato [Ipomoea batatas (L.) Lam.] was degraded using natural bacterial soil isolates. Sweetpotato was grown for 120 days in hydroponic culture with a nutrient solution comprised of a ratio of 80% modified half Hoagland solution to 20% filtered effluent from an aerobic starch hydrolysis bioreactor. The phytotoxicity of the effluent was assayed with Waldmann's Green' lettuce (Lactuca sativa L.) and the ratio selected after a 60-day bioassay using sweetpotato plants propagated vegetatively from cuttings. Controlled environment chamber experiments were conducted to investigate the impact of filtrate from biological treatment of crop residue on growth and storage root production with plants grown in a modified half Hoagland solution. Incorporation of bioreactor effluent, reduced storage root yield of 'Georgia Jet' sweetpotato but the decrease was not statistically significant when compared with yield for plants cultured in a modified half Hoagland solution without filtrate. However, yield of 'TU-82-155' sweetpotato was significantly reduced when grown in a modified half Hoagland solution into which filtered effluent had been incorporated. Total biomass was significantly reduced for both sweetpotato cultivars when grown in bioreactor effluent. The leaf area and dry matter accumulation were significantly (P < 0.05) reduced for both cultivars when grown in solution culture containing 20% filtered effluent.  相似文献   
30.
In this work, we evaluate the exploration of the Solar system by ad hoc wireless sensor networks (WSN), i.e., networks where all nodes (either moving or stationary) can both provide and relay data. The two aspects of self-organization and localization are the major challenges to achieve a reliable network for a variety of missions. We point out the diversity of environmental and operational constrains that WSN used for space exploration would face.We evaluate two groups of scenarios consisting in static or moving sensing nodes that can be either located on the ground or in the atmosphere of a Solar-system object. These scenarios enable collecting data simultaneously over a large surface or volume.We consider physical and chemical sensing of the atmosphere, surface and soil using such networks. Emerging technologies such as nodes localization techniques are reviewed. Finally, we compare the specific requirements of WSN for space exploration with those of WSN designed for terrestrial applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号