排序方式: 共有156条查询结果,搜索用时 0 毫秒
151.
Paul Morgan Matthias Grott Brigitte Knapmeyer-Endrun Matt Golombek Pierre Delage Philippe Lognonné Sylvain Piqueux Ingrid Daubar Naomi Murdoch Constantinos Charalambous William T. Pike Nils Müller Axel Hagermann Matt Siegler Roy Lichtenheldt Nick Teanby Sharon Kedar 《Space Science Reviews》2018,214(6):104
This article discusses relevant physical properties of the regolith at the Mars InSight landing site as understood prior to landing of the spacecraft. InSight will land in the northern lowland plains of Mars, close to the equator, where the regolith is estimated to be \(\geq3\mbox{--}5~\mbox{m}\) thick. These investigations of physical properties have relied on data collected from Mars orbital measurements, previously collected lander and rover data, results of studies of data and samples from Apollo lunar missions, laboratory measurements on regolith simulants, and theoretical studies. The investigations include changes in properties with depth and temperature. Mechanical properties investigated include density, grain-size distribution, cohesion, and angle of internal friction. Thermophysical properties include thermal inertia, surface emissivity and albedo, thermal conductivity and diffusivity, and specific heat. Regolith elastic properties not only include parameters that control seismic wave velocities in the immediate vicinity of the Insight lander but also coupling of the lander and other potential noise sources to the InSight broadband seismometer. The related properties include Poisson’s ratio, P- and S-wave velocities, Young’s modulus, and seismic attenuation. Finally, mass diffusivity was investigated to estimate gas movements in the regolith driven by atmospheric pressure changes. Physical properties presented here are all to some degree speculative. However, they form a basis for interpretation of the early data to be returned from the InSight mission. 相似文献
152.
Lucile Fayon Brigitte Knapmeyer-Endrun Philippe Lognonné Marco Bierwirth Aron Kramer Pierre Delage Foivos Karakostas Sharon Kedar Naomi Murdoch Raphael F. Garcia Nicolas Verdier Sylvain Tillier William T. Pike Ken Hurst Cédric Schmelzbach William B. Banerdt 《Space Science Reviews》2018,214(8):119
Both sensors of the SEIS instrument (VBBs and SPs) are mounted on the mechanical leveling system (LVL), which has to ensure a level placement on the Martian ground under currently unknown local conditions, and provide the mechanical coupling of the seismometers to the ground. We developed a simplified analytical model of the LVL structure in order to reproduce its mechanical behavior by predicting its resonances and transfer function. This model is implemented numerically and allows to estimate the effects of the LVL on the data recorded by the VBBs and SPs on Mars. The model is validated through comparison with the horizontal resonances (between 35 and 50 Hz) observed in laboratory measurements. These modes prove to be highly dependent of the ground horizontal stiffness and torque. For this reason, an inversion study is performed and the results are compared with some experimental measurements of the LVL feet’s penetration in a martian regolith analog. This comparison shows that the analytical model can be used to estimate the elastic ground properties of the InSight landing site. Another application consists in modeling the 6 sensors on the LVL at their real positions, also considering their sensitivity axes, to study the performances of the global SEIS instrument in translation and rotation. It is found that the high frequency ground rotation can be measured by SEIS and, when compared to the ground acceleration, can provide ways to estimate the phase velocity of the seismic surface waves at shallow depths. Finally, synthetic data from the active seismic experiment made during the HP3 penetration and SEIS rotation noise are compared and used for an inversion of the Rayleigh phase velocity. This confirms the perspectives for rotational seismology with SEIS which will be developed with the SEIS data acquired during the commissioning phase after landing. 相似文献
153.
Sharon Kedar Jose Andrade Bruce Banerdt Pierre Delage Matt Golombek Matthias Grott Troy Hudson Aaron Kiely Martin Knapmeyer Brigitte Knapmeyer-Endrun Christian Krause Taichi Kawamura Philippe Lognonne Tom Pike Youyi Ruan Tilman Spohn Nick Teanby Jeroen Tromp James Wookey 《Space Science Reviews》2017,211(1-4):315-337
InSight’s Seismic Experiment for Interior Structure (SEIS) provides a unique and unprecedented opportunity to conduct the first geotechnical survey of the Martian soil by taking advantage of the repeated seismic signals that will be generated by the mole of the Heat Flow and Physical Properties Package (HP3). Knowledge of the elastic properties of the Martian regolith have implications to material strength and can constrain models of water content, and provide context to geological processes and history that have acted on the landing site in western Elysium Planitia. Moreover, it will help to reduce travel-time errors introduced into the analysis of seismic data due to poor knowledge of the shallow subsurface. The challenge faced by the InSight team is to overcome the limited temporal resolution of the sharp hammer signals, which have significantly higher frequency content than the SEIS 100 Hz sampling rate. Fortunately, since the mole propagates at a rate of \(\sim1~\mbox{mm}\) per stroke down to 5 m depth, we anticipate thousands of seismic signals, which will vary very gradually as the mole travels.Using a combination of field measurements and modeling we simulate a seismic data set that mimics the InSight HP3-SEIS scenario, and the resolution of the InSight seismometer data. We demonstrate that the direct signal, and more importantly an anticipated reflected signal from the interface between the bottom of the regolith layer and an underlying lava flow, are likely to be observed both by Insight’s Very Broad Band (VBB) seismometer and Short Period (SP) seismometer. We have outlined several strategies to increase the signal temporal resolution using the multitude of hammer stroke and internal timing information to stack and interpolate multiple signals, and demonstrated that in spite of the low resolution, the key parameters—seismic velocities and regolith depth—can be retrieved with a high degree of confidence. 相似文献
154.
Astrid Maute 《Space Science Reviews》2017,212(1-2):523-551
The NASA Ionospheric Connection explorer (ICON) will study the coupling between the thermosphere and ionosphere at low- and mid-latitudes by measuring the key parameters. The ICON mission will also employ numerical modeling to support the interpretation of the observations, and examine the importance of different vertical coupling mechanisms by conducting numerical experiments. One of these models is the Thermosphere-Ionosphere-Electrodynamics General Circulation Model-ICON (TIEGCM-ICON) which will be driven by tidal perturbations derived from ICON observations using the Hough Mode Extension method (HME) and at high latitude by ion convection and auroral particle precipitation patterns from the Assimilative Mapping of Ionospheric Electrodynamics (AMIE). The TIEGCM-ICON will simulate the thermosphere-ionosphere (TI) system during the period of the ICON mission. In this report the TIEGCM-ICON is introduced, and the focus is on examining the effect of the lower boundary on the TI-system to provide some guidance for interpreting future ICON model results. 相似文献
155.
Liyi Gu Irina Zhuravleva Eugene Churazov Frits Paerels Jelle Kaastra Hiroya Yamaguchi 《Space Science Reviews》2018,214(7):108
X-ray spectra of galaxy clusters are dominated by the thermal emission from the hot intracluster medium. In some cases, besides the thermal component, spectral models require additional components associated, e.g., with resonant scattering and charge exchange. The latter produces mostly underluminous fine spectral features. Detection of the extra components therefore requires high spectral resolution. The upcoming X-ray missions will provide such high resolution, and will allow spectroscopic diagnostics of clusters beyond the current simple thermal modeling. A representative science case is resonant scattering, which produces spectral distortions of the emission lines from the dominant thermal component. Accounting for the resonant scattering is essential for accurate abundance and gas motion measurements of the ICM. The high resolution spectroscopy might also reveal/corroborate a number of new spectral components, including the excitation by non-thermal electrons, the deviation from ionization equilibrium, and charge exchange from surface of cold gas clouds in clusters. Apart from detecting new features, future high resolution spectroscopy will also enable a much better measurement of the thermal component. Accurate atomic database and appropriate modeling of the thermal spectrum are therefore needed for interpreting the data. 相似文献
156.
David H. Rodgers Patricia M. Beauchamp Laurence A. Soderblom Robert H. Brown Gun-Shing Chen Meemong Lee Bill R. Sandel David A. Thomas Robert T. Benoit Roger V. Yelle 《Space Science Reviews》2007,129(4):309-326
MICAS is an integrated multi-channel instrument that includes an ultraviolet imaging spectrometer (80–185 nm), two high-resolution
visible imagers (10–20 μrad/pixel, 400–900 nm), and a short-wavelength infrared imaging spectrometer (1250–2600 nm). The wavelength ranges were chosen
to maximize the science data that could be collected using existing semiconductor technologies and avoiding the need for multi-octave
spectrometers. It was flown on DS1 to validate technologies derived from the development of PICS (Planetary Imaging Camera
Spectrometer). These technologies provided a novel systems approach enabling the miniaturization and integration of four instruments
into one entity, spanning a wavelength range from the UV to IR, and from ambient to cryogenic temperatures with optical performance
at a fraction of a wavelength. The specific technologies incorporated were: a built-in fly-by sequence; lightweight and ultra-stable,
monolithic silicon-carbide construction, which enabled room-temperature alignment for cryogenic (85–140 K) performance, and
provided superb optical performance and immunity to thermal distortion; diffraction-limited, shared optics operating from
80 to 2600 nm; advanced detector technologies for the UV, visible and short-wavelength IR; high-performance thermal radiators
coupled directly to the short-wave infrared (SWIR) detector optical bench, providing an instrument with a mass less than 10
kg, instrument power less than 10 W, and total instrument cost of less than ten million dollars. The design allows the wavelength
range to be extended by at least an octave at the short wavelength end and to ∼50 microns at the long wavelength end. Testing
of the completed instrument demonstrated excellent optical performance down to 77 K, which would enable a greatly reduced
background for longer wavelength detectors. During the Deep Space 1 Mission, MICAS successfully collected images and spectra
for asteroid 9969 Braille, Mars, and comet 19/P Borrelly. The Borrelly encounter was a scientific hallmark providing the first
clear, high resolution images and excellent, short-wavelength infrared spectra of the surface of an active comet’s nucleus. 相似文献