首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6848篇
  免费   31篇
  国内免费   14篇
航空   3072篇
航天技术   2406篇
综合类   21篇
航天   1394篇
  2021年   74篇
  2019年   45篇
  2018年   160篇
  2017年   107篇
  2016年   112篇
  2015年   51篇
  2014年   178篇
  2013年   222篇
  2012年   212篇
  2011年   322篇
  2010年   229篇
  2009年   330篇
  2008年   366篇
  2007年   220篇
  2006年   156篇
  2005年   185篇
  2004年   182篇
  2003年   205篇
  2002年   146篇
  2001年   218篇
  2000年   127篇
  1999年   162篇
  1998年   190篇
  1997年   109篇
  1996年   171篇
  1995年   203篇
  1994年   189篇
  1993年   120篇
  1992年   149篇
  1991年   47篇
  1990年   48篇
  1989年   139篇
  1988年   59篇
  1987年   56篇
  1986年   63篇
  1985年   183篇
  1984年   144篇
  1983年   107篇
  1982年   115篇
  1981年   214篇
  1980年   49篇
  1979年   45篇
  1978年   50篇
  1977年   42篇
  1975年   50篇
  1974年   38篇
  1973年   32篇
  1972年   35篇
  1971年   35篇
  1970年   37篇
排序方式: 共有6893条查询结果,搜索用时 15 毫秒
961.
We present a preliminary version of a potential tool for real time proton flux prediction which provides proton flux profiles and cumulative fluence profiles at 0.5 and 2 MeV of solar energetic particle events, from their onset up to the arrival of the interplanetary shock at the spacecraft position (located at 1 or 0.4 AU). Based on the proton transportation model by Lario et al. [Lario, D., Sanahuja, B., Heras, A.M. Energetic particle events: efficiency of interplanetary shocks as 50 keV E < 100 MeV proton accelerators. Astrophys. J. 509, 415–434, 1998] and the magnetohydrodynamic shock propagation model of Wu et al. [Wu, S.T., Dryer, M., Han, S.M. Non-planar MHD model for solar flare-generated disturbances in the Heliospheric equatorial plane. Sol. Phys. 84, 395–418, 1983], we have generated a database containing “synthetic” profiles of the proton fluxes and cumulative fluences of 384 solar energetic particle events. We are currently validating the applicability of this code for space weather forecasting by comparing the resulting “synthetic” flux profiles with those of several real events.  相似文献   
962.
航空发动机用金属橡胶隔振器动静态性能的研究   总被引:14,自引:1,他引:14       下载免费PDF全文
以某型号航空发动机阻尼减振需求为背景,对开发研制的金属橡胶隔振器与现用的橡胶隔振器进行了动、静态实验研究。研究结果表明:金属橡胶隔振器的能量耗散性能、静态承载能力、过临界的能力及提供振动防护的区域都远远大于橡胶隔振器,而且通过改变金属橡胶隔振器的结构参数和预压缩量可以优化其隔振效果。研究结果为利用金属橡胶隔振器来改善航空发动机的振动状况提供了依据。  相似文献   
963.
The results of a large number of the antenna radiometric measurements at bands of 92, 18, 6.2, 1.35, and 1.7-1.2 cm are presented by the data of the standard telemetry system of the Spektr-R spacecraft. Both special sessions of calibration object observations in the mode of a single space radio telescope (SRT) operation and numerous observations of researched sources in the mode of the ground-space interferometer were used. The obtained results agree with the first results of Kardashev et al. (2013), i.e., within 10–15% at bands of 92, 18, and 6.2 cm and 20–25% at the band of 1.35 cm. In the main, the measurements for the eight subbands at wavelengths of 1.7-1.2 cm indicate a monotonic increase in the spectral system equivalent flux density (SEFD) of noise radiation with a frequency consistent with the calculated estimates for the discussed model. The sensitivity of the ground-space interferometer for the five subbands at wavelengths from 1.35 to 1.7 cm can be higher by a factor of 1.5, and for the three subbands from 1.35 to 1.2 cm lower by a factor of 1.5 than at the band of 1.35 cm. The SRT contribution to the interferometer sensitivity proportional to the square root of SEFD is close to the design one at the bands of 92 and 18 cm and decreases the design sensitivity approximately by a factor of 1.5 and 2 at the bands of 6.2 and 1.35 cm, respectively. These differences of implemented values from the design ones were not significantly affected the scientific program implementation.  相似文献   
964.
An empirical model of the high-latitude boundary of the outer Earth’s radiation belt (ERB) has been presented, which is based on the measurement data of electron fluxes on the polar low-orbit CORONAS-Photon, Meteor-M1, and Meteor-M2 satellites. The boundary was determined by a sharp decrease to the background level of the flux of trapped electrons with energies of 100 or 200 keV in the polar part of the profile of the outer radiation belt. A numerical algorithm has been implemented to determine the time moment, when the fastest flux changes are recorded. The primary search was carried out, first, on 30 s averaged data, then repeated on data with a higher resolution. A functional dependence was obtained in order to approximate the obtained set of intersections of the boundary by elliptical curve. The empirical model constructed using the CORONAS-Photon measurement data in the epoch of anomalously low geomagnetic activity reflects the longitude structure of the high-latitude boundary of the outer radiation belt associated with the internal Earth’s magnetic field (MF), as well as its dependence on the universal time. Based on the data of intersections of the high-latitude boundary of the outer ERB (OERB) in the epoch of 2014–2016, the latitudinal shift of the boundary to the equator dependent on geomagnetic activity has been determined, as well as the nightside shift of the boundary due to the diurnal rotation of the Earth.  相似文献   
965.
966.
    
We evaluated the influence of prolonged weightlessness on the performance of visual tasks in the course of the Russian-French missions ANTARES, Post-ANTARES and ALTAIR aboard the MIR station. Eight cosmonauts were subjects in two experiments executed pre-flight, in-flight and post-flight sessions.

In the first experiment, cosmonauts performed a task of symmetry detection in 2-D polygons. The results indicate that this detection is locked in a head retinal reference frame rather than in an environmentally defined one as meridional orientations of symmetry axis (vertical and horizontal) elicited faster response times than oblique ones. However, in weightlessness the saliency of a retinally vertical axis of symmetry is no longer significantly different from an horizontal axis. In the second experiment, cosmonauts performed a mental rotation task in which they judged whether two 3-D objects presented in different orientations were identical. Performance on this task is basically identical in weightlessness and normal gravity.  相似文献   

967.
The paper elaborates on “ lessons learned” from two recent ESA workshops, one focussing on the role of Innovation in the competitiveness of the space sector and the second on technology and engineering aspects conducive to better, faster and cheaper space programmes. The paper focuses primarily on four major aspects, namely:
1. a) the adaptations of industrial and public organisations to the global market needs;
2. b) the understanding of the bottleneck factors limiting competitiveness;
3. c) the trends toward new system architectures and new engineering and production methods;
4. d) the understanding of the role of new technology in the future applications.

Under the pressure of market forces and the influence of many global and regional players, applications of space systems and technology are becoming more and more competitive. It is well recognised that without major effort for innovation in industrial practices, organisations, R&D, marketing and financial approaches the European space sector will stagnate and loose its competence as well as its competitiveness. It is also recognised that a programme run according to the “better, faster, cheaper” philosophy relies on much closer integration of system design, development and verification, and draws heavily on a robust and comprehensive programme of technology development, which must run in parallel and off-line with respect to flight programmes.

A company's innovation capabilities will determine its future competitive advantage (in time, cost, performance or value) and overall growth potential. Innovation must be a process that can be counted on to provide repetitive, sustainable, long-term performance improvements. As such, it needs not depend on great breakthroughs in technology and concepts (which are accidental and rare). Rather, it could be based on bold evolution through the establishment of know-how, application of best practices, process effectiveness and high standards, performance measurement, and attention to customers and professional marketing. Having a technological lead allows industry to gain a competitive advantage in performance, cost and opportunities. Instrumental to better competitiveness is an R&D effort based on the adaptation of high technology products, capable of capturing new users, increasing production, decreasing the cost and delivery time and integrating high level of intelligence, information and autonomy. New systems will have to take in to account from the start what types of technologies are being developed or are already available in other areas outside space, and design their system accordingly. The future challenge for “faster, better, cheaper” appears to concern primarily “cost-effective”, performant autonomous spacecraft, “cost-effective”, reliable launching means and intelligent data fusion technologies and robust software serving mass- market real time services, distributed via EHF bands and Internet.

In conclusion, it can be noticed that in the past few years new approaches have considerably enlarged the ways in which space missions can be implemented. They are supported by true innovations in mission concepts, system architecture, development and technologies, in particular for the development of initiatives based on multi-mission mini-satellites platforms for communication and Earth observation missions. There are also definite limits to cost cutting (such as lowering heads counts and increasing efficiency), and therefore the strategic perspective must be shifted from the present emphasis on cost-driven enhancement to revenue-driven improvements for growth. And since the product life-cycle is continuously shortening, competitiveness is linked very strongly with the capability to generate new technology products which enhance cost/benefit performance.  相似文献   

968.
The relationship between proton aurora and geomagnetic pulsations Pc1, which are an indicator of development of ion-cyclotron instability in the equatorial magnetosphere, are studied on the basis of the observations of proton aurora from the IMAGE satellite, observations of particle fluxes onboard the low-orbiting NOAA satellites, and geomagnetic pulsation observations at the Lovozero observatory. A conclusion is drawn that the subauroral spots in the proton emission projected into the magnetosphere near the plasmapause are two-dimensional images at the ionospheric “screen” of the region of intense scattering of energetic protons into the loss cone at the development of an ion-cyclotron instability.  相似文献   
969.
We consider the problem of a spacecraft subjected to constant body-fixed forces and moments about all three axes during a spinning-up, thrusting maneuver. In applications, undesired forces and moments can arise due to thruster imbalances and misalignments and to center-of-mass offset. In previous works, approximate analytical solutions have been found for the attitude motion, and for the change in inertial velocity and inertial position. In this paper we find asymptotic and limiting-case expressions which we derive from the analytic solutions, in order to obtain simplified, practical formulas that lend insight into the motion. Specifically, we investigate how the motion evolves (1) as time grows without bound and (2) for geometric cases of the sphere, the thin rod, and the thin plate. Closed-forms or upper-bound limits are provided for angular velocities, Eulerian angles, angular momentum pointing error, transverse and axial velocities, and transverse and axial displacements. Summaries for the asymptotic limits (for zero initial conditions) are provided in tabular form. Results are verified by numerical simulations.  相似文献   
970.
The dynamics of the rotational motion of a satellite, moving in the central Newtonian force field under the influence of gravitational and aerodynamic torques, is investigated. The paper proposes a method for determining all equilibrium positions (equilibrium orientations) of a satellite in the orbital coordinate system for specified values of aerodynamic torque and the major central moments of inertia; the sufficient conditions for their existence are obtained. For each equilibrium orientation the sufficient stability conditions are obtained using the generalized energy integral as the Lyapunov function. The detailed numerical analysis of the regions where the stability conditions of the equilibrium positions are satisfied is carried out depending on four dimensionless parameters of the problem. It is shown that, in the general case, the number of satellite’s equilibrium positions, for which the sufficient stability conditions are satisfied, varies from 4 to 2 with an increase in the value of the aerodynamic torque magnitude.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号