Time-dependent thermal X-ray spectra are calculated from physically plausible conditions around GRB. It is shown that account for time-dependent ionization processes strongly affects the observed spectra of hot rarefied plasma. These calculations may provide an alternative explanation to the observed X-ray lines of early GRBs afterglows (such as GRB 011211). Our technique will allow one to obtain independent constraints on the GRB collimation angle and on the clumpiness of circumstellar matter. 相似文献
Methods used to project risks in low-Earth orbit are of questionable merit for exploration missions because of the limited radiobiology data and knowledge of galactic cosmic ray (GCR) heavy ions, which causes estimates of the risk of late effects to be highly uncertain. Risk projections involve a product of many biological and physical factors, each of which has a differential range of uncertainty due to lack of data and knowledge. Using the linear-additivity model for radiation risks, we use Monte-Carlo sampling from subjective uncertainty distributions in each factor to obtain an estimate of the overall uncertainty in risk projections. The resulting methodology is applied to several human space exploration mission scenarios including a deep space outpost and Mars missions of duration of 360, 660, and 1000 days. The major results are the quantification of the uncertainties in current risk estimates, the identification of factors that dominate risk projection uncertainties, and the development of a method to quantify candidate approaches to reduce uncertainties or mitigate risks. The large uncertainties in GCR risk projections lead to probability distributions of risk that mask any potential risk reduction using the "optimization" of shielding materials or configurations. In contrast, the design of shielding optimization approaches for solar particle events and trapped protons can be made at this time and promising technologies can be shown to have merit using our approach. The methods used also make it possible to express risk management objectives in terms of quantitative metrics, e.g., the number of days in space without exceeding a given risk level within well-defined confidence limits. 相似文献
We propose to study the radiation environment on board different flight vehicles: cosmos-type satellites, orbital stations, Space Shuttles and civil (sonic and supersonic) aircraft. These investigations will be carried out with single type of passive detector, namely, nuclear photoemulsions (NPE) with adjustable threshold of particle detection within broad range of linear energy transfer (LET) that is done by means of the technique of selective development of NPE exposed in space.
These investigations will allow one to determine:
• integral spectra of LET of charged particles of cosmic ray (CR) over a wide range from 2.0 to 5×104 MeV/cm in biological tissue;
• differential energy spectra of fast neutrons (1–20 MeV);
• estimation of absorbed and equivalent doses from charged and neutral component CR;
• charge and energy spectra of low energy nuclei (E≤100 MeV) with Z≥2 having in view the extreme hazard radiation to biological objects and microelectronic schemes taken on board inside and outside of these different flight vehicles with exposures from several days to several months.
The investigation of radiation environment on board the airplanes depending on the flight parameters will be conducted using emulsions of different sensitivity without any controlling of threshold sensitivity (Akopova et al., 1996). The proposed detector can be used in the joint experiments on the new International Cosmic Station “Alpha”. 相似文献
Seasonal-to-interannual variability of the winter-spring bloom in the Gulf of Cádiz, eastern North Atlantic, has been investigated using chlorophyll-a remote sensing (CHL). These data have been obtained from the GlobColour project; the temporal coverage extends from September 1997 to December 2010. In this study we develop a generic quantitative approach for describing the temporal variability in the shape of the winter-spring bloom within a region. Variability in both the timing and magnitude of the bloom in the basin has been evaluated as a function of physical properties in the water column such as Mixed Layer Depth (MLD, GODAS model), sea surface temperature (SST, from AVHRR radiometers), photosynthetically-active radiation (PAR, from ocean color data) and euphotic depth (Zeu, from ocean color data). The analysis indicated that the timing, size and duration of the phytoplankton bloom in this area are largely controlled by both meteorological and oceanographic conditions at different scales; this means that it is likely to vary widely from one year to another. 相似文献
Small changes in semimajor axis of the orbits selected for the GNSS-R [R as Reflectometry] satellites, so-called fine orbit tuning, known from the ESA’s Gravity and steady-state Ocean Circulation Explorer mission, can dramatically increase the number of nadir and off-nadir reflecting points and, in turn, can enhance the capability of the concept of bistatic altimetry (GNSS Reflectometry) without additional costs. The application of our suggestion is feasible for a satellite which will be equipped by thrusters for the orbit keeping. During the mission lifetime several orbit tunings are feasible, just to transfer from one to another orbit. Then we can study short-periodic or longer-periodic features, according to scientific goals defined for the mission. The shortest cycles (few days), corresponding to the required revisit time (defined by ESA), may be subcycles of much longer cycles (repeat periods). 相似文献
Intense fires were produced on the Paraná river delta islands, Argentina, during most part of 2008, by a combination of an exceptionally dry period and the farmers’ use of a fire land-cleaning technique. In April 2008, those fires significantly affected the nearby regions and their inhabitants, from Rosario city to Buenos Aires mega-city. In this work we present satellite as well as ground Aerosol Optical Depth (AOD) at 550 nm data obtained during the propagation of pollution clouds to the central zone of Argentina. The highest value (1.18) was registered at Buenos Aires by atmospheric remote sensing, using the satellite instrument MODIS/Terra on April 18th 2008 at 10:35 local time (= UT − 3 h). On the same day, ground air quality detectors also measured in this city the highest Total Suspended Particle (TSP) value of the month, 2.02 mg/m3. The AOD(550) daily variation at Rosario Astronomical Observatory, which is located near the Paraná riverside, was derived by combining solar ultraviolet erythemal irradiance data (measured with a YES biometre) with model calculations. On April 25th 2008, from 12:00 to 15:30 local time, a rather high and constant AOD(550) value was registered, with a mean value of (0.90 ± 0.21). Cities located on the side of the Rosario–Buenos Aires highway (San Nicolás, Baradero and San Pedro) were also affected, showing a mean AOD(550) between the Rosario and Buenos Aires values. The particulate matter was collected with gridded samplers placed on the Paraná river islands as well as at the Rosario Observatory. They were analysed with a Scanning Electron Microscope (SEM) and mainly showed a biological origin. Even if normally large particles travel small distances from the source, organic aerosol in the range of 40–100 μm and complex asymmetric structures were registered several kilometres away from the aerosol sources on the islands. Another event of intense UV index attenuation (98.6%) occurred on September 18th 2008, due to very dense smoke clouds that extended over the Rosario area for several hours. The clouds were driven away from the fires by East–northeast and East–southeast winds. The minimum value of this index measured around noon allows to derive a maximum AOD(550)max = (3.65 ± 0.90) at 12:45 local time. Soot clouds extended over the Paraná river, transporting Burned Biomass Debris (BBD) that deposited on Rosario. In particular, burned leaves and small branches with dimensions of 1–20 cm were collected. The mean (BBD) particles deposited on the ground from 7:00 to 19:00 local time were (0.92 ± 0.20) BBD/(m2 h). 相似文献
This study proposes a motion detection and object tracking technique for GEO debris in a sequence of images. A couple of techniques (called the “stacking method” and “line-identifying technique”) were recently proposed to address the same problem. Although these techniques are effective at detecting the debris position and motion in the image sequences, there are some issues concerned with computational load and assumed debris motion. This study derives a method to estimate motion vectors of objects in image sequence and finally detect the debris locations by using a computer vision technique called an optical flow algorithm. The new method detects these parameters in low computational time in a serial manner, which implies that it has an advantage to track not only linear but also nonlinear motion of GEO debris more easily than the previous methods. The feasibility of the proposed methods is validated using real and synthesized image sequences which contain some typical debris motions. 相似文献
Collisionless unmagnetized plasma consisting of a mixture of warm ion-fluid and isothermal-electron is considered, assuming that the ion flow velocity has a weak relativistic effect. The reductive perturbation method has been employed to derive the Korteweg–de Vries (KdV) equation for small – but finite-amplitude electrostatic ion-acoustic waves in this plasma. The semi-inverse method and Agrawal’s method lead to the Euler–Lagrange equation that leads to the time fractional KdV equation. The variational-iteration method given by He is used to solve the derived time fractional KdV equation. The calculations show that the fractional order may play the same rule of higher order dissipation in KdV equation to modulate the soliton wave amplitude in the plasma system. The results of the present investigation may be applicable to some plasma environments, such as space-plasmas, laser-plasma interaction, plasma sheet boundary layer of the earth’s magnetosphere, solar atmosphere and interplanetary space. 相似文献
This paper outlines, and explores the uncertainties in, hypothesized connections between a series of processes that could explain two long-standing puzzles; those of (1) the observed winter storm vorticity responses to atmospheric energy inputs that change the ionosphere–earth current density, Jz, that appear to involve storm invigoration, and (2) changes in anti-cyclonic blocking and circulation that include the observed colder winters in Great Britain and western Europe at solar minima, and especially at extended solar minima. A working hypothesis for the mechanism responsible for (1) is that the flow of Jz through conductivity gradients, as in stratified cloud layers and fog, especially with sea-salt aerosol haze over the high latitude winter oceans, deposits electric changes on droplets and aerosol particles; most importantly on cloud condensation nuclei (CCN). These electric charges modulate scavenging of the particles in clouds and haze layers, increasing the concentration of small CCN and decreasing the concentration of large CCN. When further cloud formation occurs there is increased concentration of small droplets and decreased concentration of large ones, reducing coalescence and the production of rain. Thus updrafts carry more liquid water above the freezing level, and there the increased production of ice releases more latent heat and invigorates the updraft (the Rosenfeld mechanism), leading to increased vorticity. Here we explore the major uncertainties for the reality of the above chain of physical processes. A consequence of cumulative cyclonic vorticity increases is increases in downstream anti-cyclonic blocking. A further working hypothesis for (2) is that the invigoration may be large enough to contribute to the observed increases in blocking in winters at solar minima (high Jz) in the North Atlantic, that result in colder winters in the UK and northern Europe. 相似文献
We present a novel instrument concept to measure the energy and mass spectra of ions incident on the lunar surface, based on the E-parallel–B or Thomson-parabola device used extensively as a diagnostic in the plasma fusion community. The Apollo-era Suprathermal Ion Detector Experiment (SIDE) was the first instrument package to perform in-situ measurements of ions incident on the lunar surface. The ions can originate from a variety of sources, including the solar wind, the Earth’s magnetotail, and photoionization of the thin lunar atmosphere. The species and energy distribution of ions arriving at the lunar surface depend in a complicated and poorly-understood fashion on the phase of the lunar day, the position of the Moon with respect to the Earth, and on the local plasma environment. 相似文献