首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6851篇
  免费   16篇
  国内免费   20篇
航空   3067篇
航天技术   2406篇
综合类   21篇
航天   1393篇
  2021年   74篇
  2019年   45篇
  2018年   160篇
  2017年   107篇
  2016年   112篇
  2015年   51篇
  2014年   178篇
  2013年   222篇
  2012年   212篇
  2011年   322篇
  2010年   229篇
  2009年   329篇
  2008年   366篇
  2007年   220篇
  2006年   156篇
  2005年   185篇
  2004年   182篇
  2003年   205篇
  2002年   145篇
  2001年   218篇
  2000年   127篇
  1999年   162篇
  1998年   190篇
  1997年   109篇
  1996年   171篇
  1995年   203篇
  1994年   189篇
  1993年   120篇
  1992年   149篇
  1991年   47篇
  1990年   48篇
  1989年   139篇
  1988年   59篇
  1987年   56篇
  1986年   63篇
  1985年   183篇
  1984年   144篇
  1983年   107篇
  1982年   115篇
  1981年   214篇
  1980年   49篇
  1979年   45篇
  1978年   50篇
  1977年   42篇
  1975年   50篇
  1974年   38篇
  1973年   32篇
  1972年   35篇
  1971年   35篇
  1970年   37篇
排序方式: 共有6887条查询结果,搜索用时 15 毫秒
111.
Astrophysical fluids are turbulent a fact which changes the dynamics of many key processes, including magnetic reconnection. Fast reconnection of magnetic field in turbulent fluids allows the field to change its topology and connections. As a result, the traditional concept of magnetic fields being frozen into the plasma is no longer applicable. Plasma associated with a given magnetic field line at one instant is distributed along a different set of magnetic field lines at the next instant. This diffusion of plasmas and magnetic field is enabled by reconnection and therefore is termed “reconnection diffusion”. The astrophysical implications of this concept include heat transfer in plasmas, advection of heavy elements in interstellar medium, magnetic field generation etc. However, the most dramatic implications of the concept are related to the star formation process. The reason is that magnetic fields are dynamically important for most of the stages of star formation. The existing theory of star formation has been developed ignoring the possibility of reconnection diffusion. Instead, it appeals to the decoupling of mass and magnetic field arising from neutrals drifting in respect to ions entrained on magnetic field lines, i.e. through the process that is termed “ambipolar diffusion”. The predictions of ambipolar diffusion and reconnection diffusion are very different. For instance, if the ionization of media is high, ambipolar diffusion predicts that the coupling of mass and magnetic field is nearly perfect. At the same time, reconnection diffusion is independent of the ionization but depends on the scale of the turbulent eddies and on the turbulent velocities. In the paper we explain the physics of reconnection diffusion both from macroscopic and microscopic points of view, i.e. appealing to the reconnection of flux tubes and to the diffusion of magnetic field lines. We make use of the Lazarian and Vishniac (Astrophys. J. 517:700, 1999) theory of magnetic reconnection and show that this theory is applicable to the partially ionized gas. We quantify the reconnection diffusion rate both for weak and strong MHD turbulence and address the problem of reconnection diffusion acting together with ambipolar diffusion. In addition, we provide a criterion for correctly representing the magnetic diffusivity in simulations of star formation. We discuss the intimate relation between the processes of reconnection diffusion, field wandering and turbulent mixing of a magnetized media and show that the role of the plasma effects is limited to “breaking up lines” on small scales and does not affect the rate of reconnection diffusion. We address the existing observational results and demonstrate how reconnection diffusion can explain the puzzles presented by observations, in particular, the observed higher magnetization of cloud cores in comparison with the magnetization of envelopes. We also outline a possible set of observational tests of the reconnection diffusion concept and discuss how the application of the new concept changes our understanding of star formation and its numerical modeling. Finally, we outline the differences of the process of reconnection diffusion and the process of accumulation of matter along magnetic field lines that is frequently invoked to explain the results of numerical simulations.  相似文献   
112.
The ionosphere of Mars has been explored mostly with the radio occultation experiment onboard Mariners 6, 7, 9; Mars 2, 3, 4, 6; Viking 1, 2, and more recently on Mars Global Surveyor (MGS) and Mars Express (MEX). In addition to the radio occultation experiment, MEX also carried Mars Advanced Radar for the Subsurface and Ionosphere Sounding (MARSIS) experiment which provided electron density profiles well above the main ionospheric peak. The atmosphere of Mars was measured directly by the neutral mass spectrometer onboard Viking 1 and 2 Landers. Later, an accelerometer and radio occultation experiment on MGS provided large data sets of atmospheric density at various locations in the upper and lower atmospheres of Mars, respectively. In this paper we review results of these upper and lower atmospheric/ionospheric measurements. Results of these measurements have been compared with theoretical models by several workers; therefore, we also review various atmospheric and ionospheric models of Mars.  相似文献   
113.
Although the auroral substorm has been long regarded as a manifestation of the magnetospheric substorm, a direct relation of active auroras to certain magnetospheric processes is still debatable. To investigate the relationship, we combine the data of the UV imager onboard the Polar satellite with plasma and magnetic field measurements by the Geotail spacecraft. The poleward edge of the auroral bulge, as determined from the images obtained at the LHBL passband, is found to be conjugated with the region where the oppositely directed fast plasma flows observed in the near-Earth plasma sheet during substorms are generated. We conclude that the auroras forming the bulge are due to the near-Earth reconnection process. This implies that the magnetic flux through the auroral bulge is equal to the flux dissipated in the magnetotail during the substorm. Comparison of the magnetic flux through the auroral bulge with the magnetic flux accumulated in the tail lobe during the growth phase shows that these parameters have the comparable values. This is a clear evidence of the loading–unloading scheme of substorm development. It is shown that the area of the auroral bulge developing during substorm is proportional to the total (magnetic plus plasma) pressure decrease in the magnetotail. These findings stress the importance of auroral bulge observations for monitoring of substorm intensity in terms of the magnetic flux and energy dissipation.  相似文献   
114.
Electric power anomalies or disturbances can disrupt the normal operation of equipment, accelerate aging, or even cause outright failures thus resulting in increased costs of maintenance and reduced system reliability. Past research on the effects caused by power anomalies has been mostly focused on industrial, commercial, or residential systems, or on power distribution equipment. A literature survey reveals that there is no comprehensive review related to low-voltage (LV) power systems and utilization equipment applicable to military combat vehicles, such as aircraft and ships. This paper summarizes the results of a new literature survey that focused on the causes, effects, and mitigation methods for power anomalies typical of LV mobile power systems. Electric power anomaly cost data collected from the literature are also presented, from which the costs of anomalies to the national defense are estimated using some simple rationales.  相似文献   
115.
An approach to knowledge-aided covariance estimation   总被引:1,自引:0,他引:1  
This paper introduces a parametric covariance estimation scheme for use with space-time adaptive processing (STAP) methods operating in heterogeneous clutter environments. The approach blends both a priori knowledge and data observations within a parameterized model to capture instantaneous characteristics of the cell under test (CUT) and reduce covariance errors leading to detection performance loss. We justify this method using both measured and synthetic data. Performance potential for the specific operating conditions examined herein include: 1) averaged behavior within roughly 2 dB of the optimal filter, 2) 1 dB improvement in exceedance characteristic relative to the optimal filter, highlighting improved instantaneous capability, and 3) impervious ness to corruptive target-like signals in the secondary data (no additional signal-to-interference-plus-noise ratio (SINK) loss, compared with 10 dB or greater loss for the standard STAP implementation), with corresponding detections comparable to the optimal filter case  相似文献   
116.
We analyzed high-angular rate streaks first recorded by OSIRIS-REx’s MapCam during a 2017 search for Earth Trojan asteroids. We interpret them as water-ice particles that translated across the imager’s field of view, originating from the spacecraft itself. Their translation velocities approximated 0.1–1?m/s based on reasonable conclusions about their range. Pursuing several lines of investigation to seek a coherent hypothesis, we conclude that the episodic releases of the water ice particles are associated with spacecraft attitudes that resulted in solar illumination of previously shadowed regions. This correlation suggests that the OSIRIS-REx spacecraft itself possesses micro-climatic zones consisting of hot regions and cold traps that may temporarily potentially pass volatiles back and forth before losing most of them.  相似文献   
117.
To identify policies that will promote positive effects and mitigate negative ones of grazing is a major challenge in the Silvo-pastoral system. This paper presents the role of examining land-cover change trajectories by remote sensing imagery in grazing policy monitoring. The study was conducted for Duzlercami forest ecosystem located in the Mediterranean geographical region of Turkey and administrated by the General Directorate of Forestry (GDF) of the Ministry of Forestry and Water Affairs. Time series land-cover datasets from Landsat images between 1988 and 2016 were collected and classified. To link the conversions among trajectories and grazing policy, class level landscape metrics derived from the classified images were used. To validate the approach, yearly grazing-plans managed by GDF and populations of livestock were used. Results of this research have indicated that even though there is a yearly grazing plan, overgrazing can happen on the pilot site, and it can be easily identified by the destruction of woody vegetation. The notable correlation (r2?=?0.89) between degraded woody vegetation and cattle population has occurred in the last 30?years in the landscape, and Landsat imagery can effectively support the grazing policy mapping and monitoring.  相似文献   
118.
In this paper, we investigate temporal and spatial magnetosphere response to the impact of interplanetary (IP) shocks with different inclinations and speeds on the Earth’s magnetosphere. A data set with more than 500 IP shocks is used to identify positive sudden impulse (SI+) events as expressed by the SuperMAG partial ring current index. The SI+ rise time (RT), defined as the time interval between compression onset and maximum SI+ signature, is obtained for each event. We use RT and a model suggested by Takeuchi et al. (2002) to calculate the geoeffective magnetospheric distance (GMD) in the shock propagation direction as a function of shock impact angle and speed for each event. GMD is a generalization of the geoeffective magnetosphere length (GML) suggested by Takeuchi et al. (2002), defined from the subsolar point along the X line toward the tail. We estimate statistical GMD and GML values which are then reported for the first time. We also show that, similarly to well-known results for RT, the highest correlation coefficient for the GMD and impact angle is found for shocks with high speeds and small impact angles, and the faster and more frontal the shock, the smaller the GMD. This result indicates that the magnetospheric response depends heavily on shock impact angle. With these results, we argue that the prediction and forecasting of space weather events, such as those caused by coronal mass ejections, will not be accurately accomplished if the disturbances’ angles of impact are not considered as an important parameter within model and observation scheme capabilities.  相似文献   
119.
120.
Long-term changes in the E-layer critical frequency, foE, at three stations of the European region (Juliusruh, Slough and Rome) and also at Moscow and Wakkanai stations are analyzed by the method developed by the authors and described in detail in the previous papers. It is found that Juliusruh and Slough stations demonstrate a well-pronounced change in foE (a trend) during two previous decades. At the same time, the same features of the behavior of the aforementioned trend k(foE) are obtained. The trend is positive and negative in the morning and evening hours, respectively. Similar diurnal behavior of k(foE) is found also for Moscow station but with lower absolute values of the trends. A well-pronounced seasonal behavior of k(foE) is detected at Juliusruh and Slough: the trend is minimal and maximal in the summer period and at the end of fall—beginning of winter, respectively. The maximal amplitude in the morning hours reaches +0.04?MHz per year, whereas the minimal amplitude in evening hours is ?0.06?MHz per year. No systematic changes exceeding by the magnitude 0.01?MHz per year are found for Rome and Wakkanai stations. It is assumed that the observed trends are related to changes (trends) in the meridional wind bringing NO molecules from the auroral oval to lower latitudes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号