首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18835篇
  免费   37篇
  国内免费   123篇
航空   10181篇
航天技术   5526篇
综合类   241篇
航天   3047篇
  2021年   155篇
  2018年   261篇
  2016年   175篇
  2014年   434篇
  2013年   514篇
  2012年   436篇
  2011年   642篇
  2010年   474篇
  2009年   830篇
  2008年   852篇
  2007年   433篇
  2006年   431篇
  2005年   416篇
  2004年   460篇
  2003年   533篇
  2002年   487篇
  2001年   600篇
  2000年   364篇
  1999年   461篇
  1998年   452篇
  1997年   329篇
  1996年   402篇
  1995年   472篇
  1994年   454篇
  1993年   364篇
  1992年   336篇
  1991年   249篇
  1990年   242篇
  1989年   412篇
  1988年   208篇
  1987年   239篇
  1986年   240篇
  1985年   641篇
  1984年   521篇
  1983年   409篇
  1982年   490篇
  1981年   620篇
  1980年   246篇
  1979年   189篇
  1978年   189篇
  1977年   146篇
  1976年   156篇
  1975年   189篇
  1974年   181篇
  1973年   161篇
  1972年   188篇
  1971年   148篇
  1970年   143篇
  1969年   147篇
  1967年   142篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
731.
HEAO-1 observed hard radiations (X- and gamma-rays) from a major solar flare on 11 July 1978. The observations showed gamma-ray line and continuum emission extending to the highest energy observed. The lines are identified with the 2.2 MeV line of deuterium formation and the 4.4 MeV line of inelastic scattering on 12C, both previously observed in the flares of August 1972 [1]. The 11 July flare was identified as a white-light flare by observations at Debrecen [2]. It thus provides the first opportunity for a detailed examination of white-light flare theories that depend upon proton heating of the photosphere. The line strength over a four-minute integration at 2.2 MeV was 1.00 ± 0.29 ph(cm2 sec)−1, and the gamma-ray emission (excluding the 2.2 MeV line which was appreciably delayed) lagged by less than 20 sec approximately after the hard X-ray and microwave fluxes. We conclude that the “second-stage” acceleration of high-energy solar particles must commence promptly after the impulsive phase.  相似文献   
732.
Coronal mass ejections (CMEs) observed near the Sun via LASCO coronographic imaging are the most important solar drivers of geomagnetic storms. ICMEs, their interplanetary, near-Earth counterparts, can be detected in situ, for example, by the Wind and ACE spacecraft. An ICME usually exhibits a complex structure that very often includes a magnetic cloud (MC). They can be commonly modelled as magnetic flux ropes and there is observational evidence to expect that the orientation of a halo CME elongation corresponds to the orientation of the flux rope. In this study, we compare orientations of elongated CME halos and the corresponding MCs, measured by Wind and ACE spacecraft. We characterize the MC structures by using the Grad–Shafranov reconstruction technique and three MC fitting methods to obtain their axis directions. The CME tilt angles and MC fitted axis angles were compared without taking into account handedness of the underlying flux rope field and the polarity of its axial field. We report that for about 64% of CME–MC events, we found a good correspondence between the orientation angles implying that for the majority of interplanetary ejecta their orientations do not change significantly (less than 45 deg rotation) while travelling from the Sun to the near-Earth environment.  相似文献   
733.
We propose a jet model for the low/hard state of galactic black-hole X-ray sources which explains the energy spectra from radio to X-rays and a number of timing properties in the X-ray domain such as the time lag spectra, the hardening of the power density spectra and the narrowing of the autocorrelation function with increasing photon energy. The model assumes that (i) there is a magnetic field along the axis of the jet, (ii) the electron density in the jet drops inversely proportional to distance, (iii) the jet is “hotter” near its center than at its periphery, and (iv) the electrons in the jet follow a power-law distribution function. We have performed Monte Carlo simulations of Compton upscattering of soft photons from the accretion disk and have found power-law high-energy spectra with photon-number index in the range 1.5–2 and cutoff at a few hundred keV, power-law time lags versus Fourier frequency with index 0.8, and an increase of the rms amplitude of variability and a narrowing of the autocorrelation function with increasing photon energy as they have been observed in Cygnus X-1. The spectrum at long wavelengths (radio, infrared, optical) is modeled to come from synchrotron radiation of the energetic electrons in the jet. We find flat to inverted radio spectra that extend from the radio up to about the optical band. For magnetic field strengths of the order 105–106 G at the base of the jet, the calculated spectra agree well in slope and flux with the observations.  相似文献   
734.
It may not be doubted anymore that anomalous cosmic rays (ACRs) are produced in the heliosphere from interplanetary pick-up ions through their acceleration at the solar wind termination shock. However, there is no general agreement in the community of heliospheric researchers concerning the mechanism of injection of the pick-up ions into the shock acceleration. We discuss here three possible ways for pick-up ions to be involved into the acceleration process at the termination shock: (1) preacceleration of pick-up ions in the whole region from the Sun up to the termination shock by solar wind turbulences and interplanetary shock waves, (2) local preacceleration of pick-up ions in a vicinity of the termination shock by shock surfing, and (3) formation of high-velocity tails in pick-up ion spectra consisting of secondary pick-up ions which are produced in the supersonic solar wind due to ionization of energetic neutral atoms entering from the inner heliosheath.  相似文献   
735.
Noise in wireless systems from solar radio bursts   总被引:1,自引:0,他引:1  
Solar radio bursts were first discovered as result of their interference in early defensive radar systems during the Second World War (1942). Such bursts can still affect radar systems, as well as new wireless technologies. We have investigated a forty-year record of solar radio burst data (1960–1999) as well as several individual radio events in the 23rd solar cycle. This paper reviews the results of a portion of this research. Statistically, for frequencies f  1 GHz (near current wireless bands), there can be a burst with amplitudes >103 solar flux units (SFU; 1 SFU = 10−22 W/m2) every few days during solar maximum conditions, and such burst levels can produce problems in contemporary wireless systems.  相似文献   
736.
Relativistic jets are a common property of radio-loud Active Galactic Nuclei (AGN). Understanding jet physical properties is an essential precursor to understanding the mechanisms of energy transport, and ultimately, how energy is extracted from the central black hole. In this paper, I highlight recent developments from Chandra and HST observations of kpc-scale jets in AGN, with particular emphasis on our survey of 17 radio jets in a sample of FRII radio galaxies. These observations show that (1) X-ray and optical emission is common from kpc-scale jets, (2) a large fraction of the bolometric luminosity is emitted at X-rays, and (3) in most sources, a candidate emission process for the X-rays is inverse Compton scattering of the Cosmic Microwave Background off the relativistic electrons in the jet. If the latter scenario holds, the implication is that jets are still relativistic on kpc scales.  相似文献   
737.
Regoliths are a most important component of solar system bodies. The study of their formation and evolution depends upon measurements from orbiting spacecraft or Earth-based observations, and by the development of models addressing formation and evolution scenarios, physical properties and composition of the constituent materials. For asteroids and comets, recent measurements tend to confirm the idea of extremely low bulk densities. The porosity of the outermost regolith layers should thus reach very high values. Regolith formation and growth partly depends upon gravity and mechanical properties of its constituent particles, which are very poorly documented. Gravitational effects play an important role in the shaping processes of large bodies, while material strength properties are more important for smaller bodies. The understanding of both, aggregation processes of, and of light scattering from, such media, would strongly benefit from experiments led under microgravity, and provide insight into regolith formation processes: much lower collision and aggregation velocities can be achieved in a microgravity environment, leading to the formation of much fluffier aggregates than possible on Earth. ICAPS is a multi-year scientific programme to simulate cosmic and atmospheric particle systems on board the International Space Station. The ICAPS facility will allow to build simulated regolith and thus enable the study of their mechanical and optical properties. Measurements such as tensile strength, electrical and thermal conductivities, compressibility and porosity, will be made, as well as monitoring of collisions into such simulated regolith. The article discusses the ICAPS research plan for regolith studies and the facility current status.  相似文献   
738.
For humans to survive during long-term missions on the Martian surface, bioregenerative life support systems including food production will decrease requirements for launch of Earth supplies, and increase mission safety. It is proposed that the development of "modular biospheres"--closed system units that can be air-locked together and which contain soil-based bioregenerative agriculture, horticulture, with a wetland wastewater treatment system is an approach for Mars habitation scenarios. Based on previous work done in long-term life support at Biosphere 2 and other closed ecological systems, this consortium proposes a research and development program called Mars On Earth(TM) which will simulate a life support system designed for a four person crew. The structure will consist of 6 x 110 square meter modular agricultural units designed to produce a nutritionally adequate diet for 4 people, recycling all air, water and waste, while utilizing a soil created by the organic enrichment and modification of Mars simulant soils. Further research needs are discussed, such as determining optimal light levels for growth of the necessary range of crops, energy trade-offs for agriculture (e.g. light intensity vs. required area), capabilities of Martian soils and their need for enrichment and elimination of oxides, strategies for use of human waste products, and maintaining atmospheric balance between people, plants and soils.  相似文献   
739.
Low fluence.     
The question of the appropriate extrapolation to low dose has long been a subject of controversy. A linear no-threshold model is favored by regulatory bodies as the basis of RBE assignments and estimates of radiation hazards to the general population. This model is largely supported by extensive application of the linear-quadratic survival formula "fitted" statistically to a wide variety of experimental data obtained at doses typically exceeding 1 Gy, and then extrapolated to mGy for practical applications, and even to the prediction of hazards from single electrons. Such extrapolations are questionable at best, and may even prove hazardous for risk evaluations. Fluence and geometry rather than dose based data are proposed as a basis for a limiting "threshold" for a "low dose" extrapolation. The proposed threshold is one where the fluence of particles is one per square micron, where on average only 2/3 of the 1 micrometers2 pixels covering an irradiated area are traversed by one or more particles. The corresponding dose threshold is determined by the LET of the bombarding radiation. For relativistic electrons this dose is about 0.032 Gy.  相似文献   
740.
Theory of the plasma sheet with medium-scale developed turbulence gives the possibility to explain the main processes of plasma sheet bifurcation and theta-aurora formation during IMF Bz > 0. The model suggests that during IMF Bz > 0 small bulge structure in the plasma sheet center is formed. The polarization of the bulge due to dawnward electron motion and duskward ion motion decreases the large-scale electric field in the bulge region. The decrease of the large-scale field in the conditions of constant coefficient of diffusion leads to the bulge growth. The results of plasma sheet bifurcation and theta-aurora formation modelling are presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号