全文获取类型
收费全文 | 6854篇 |
免费 | 16篇 |
国内免费 | 20篇 |
专业分类
航空 | 3070篇 |
航天技术 | 2406篇 |
综合类 | 21篇 |
航天 | 1393篇 |
出版年
2021年 | 74篇 |
2019年 | 45篇 |
2018年 | 160篇 |
2017年 | 107篇 |
2016年 | 112篇 |
2015年 | 51篇 |
2014年 | 178篇 |
2013年 | 222篇 |
2012年 | 212篇 |
2011年 | 322篇 |
2010年 | 229篇 |
2009年 | 329篇 |
2008年 | 366篇 |
2007年 | 220篇 |
2006年 | 156篇 |
2005年 | 185篇 |
2004年 | 183篇 |
2003年 | 205篇 |
2002年 | 145篇 |
2001年 | 218篇 |
2000年 | 127篇 |
1999年 | 162篇 |
1998年 | 190篇 |
1997年 | 109篇 |
1996年 | 171篇 |
1995年 | 203篇 |
1994年 | 189篇 |
1993年 | 120篇 |
1992年 | 149篇 |
1991年 | 48篇 |
1990年 | 49篇 |
1989年 | 139篇 |
1988年 | 59篇 |
1987年 | 56篇 |
1986年 | 63篇 |
1985年 | 183篇 |
1984年 | 144篇 |
1983年 | 107篇 |
1982年 | 115篇 |
1981年 | 214篇 |
1980年 | 49篇 |
1979年 | 45篇 |
1978年 | 50篇 |
1977年 | 42篇 |
1975年 | 50篇 |
1974年 | 38篇 |
1973年 | 32篇 |
1972年 | 35篇 |
1971年 | 35篇 |
1970年 | 37篇 |
排序方式: 共有6890条查询结果,搜索用时 15 毫秒
191.
Leslie A. Young S. Alan Stern Harold A. Weaver Fran Bagenal Richard P. Binzel Bonnie Buratti Andrew F. Cheng Dale Cruikshank G. Randall Gladstone William M. Grundy David P. Hinson Mihaly Horanyi Donald E. Jennings Ivan R. Linscott David J. McComas William B. McKinnon Ralph McNutt Jeffery M. Moore Scott Murchie Catherine B. Olkin Carolyn C. Porco Harold Reitsema Dennis C. Reuter John R. Spencer David C. Slater Darrell Strobel Michael E. Summers G. Leonard Tyler 《Space Science Reviews》2008,140(1-4):93-127
The New Horizons spacecraft will achieve a wide range of measurement objectives at the Pluto system, including color and panchromatic maps, 1.25–2.50 micron spectral images for studying surface compositions, and measurements of Pluto’s atmosphere (temperatures, composition, hazes, and the escape rate). Additional measurement objectives include topography, surface temperatures, and the solar wind interaction. The fulfillment of these measurement objectives will broaden our understanding of the Pluto system, such as the origin of the Pluto system, the processes operating on the surface, the volatile transport cycle, and the energetics and chemistry of the atmosphere. The mission, payload, and strawman observing sequences have been designed to achieve the NASA-specified measurement objectives and maximize the science return. The planned observations at the Pluto system will extend our knowledge of other objects formed by giant impact (such as the Earth–moon), other objects formed in the outer solar system (such as comets and other icy dwarf planets), other bodies with surfaces in vapor-pressure equilibrium (such as Triton and Mars), and other bodies with N2:CH4 atmospheres (such as Titan, Triton, and the early Earth). 相似文献
192.
Frederick A. Gent 《Space Science Reviews》2012,166(1-4):281-291
We review progress in the development of physically realistic three dimensional simulated models of the galaxy. We consider the scales from star forming molecular clouds to the full spiral disc. Models are computed using hydrodynamic (HD) or magnetohydrodynamic (MHD) equations and may include cosmic ray or tracer particles. The dynamical scales covered, ranging from the full galaxy structure, through the turbulent scales of supernova (SN) explosions, down to cloud collapse and star formation, make it impossible with current computing tools and resources to resolve all of these in one model. We therefore consider a hierarchy of models and how they can be related to enhance our understanding of the complete galaxy. 相似文献
193.
Diffusive shock acceleration is the theory of particle acceleration through multiple shock crossings. In order for this process to proceed at a rate that can be reconciled with observations of high-energy electrons in the vicinity of the shock, and for cosmic rays protons to be accelerated to energies up to observed galactic values, significant magnetic field amplification is required. In this review we will discuss various theories on how magnetic field amplification can proceed in the presence of a cosmic ray population. On both short and long length scales, cosmic ray streaming can induce instabilities that act to amplify the magnetic field. Developments in this area that have occurred over the past decade are the main focus of this paper. 相似文献
194.
I. M. Zakirov K. A. Alekseev R. A. Kayumov I. R. Gainutdinov 《Russian Aeronautics (Iz VUZ)》2009,52(3):347-350
We consider some general problems of improving the strength characteristics of folded cores as well as the corresponding techniques
for modifying the core material polymer surfaces with the use of nanotechnologies and the “mass-strength” criteria. 相似文献
195.
D. Perrone R. O. Dendy I. Furno R. Sanchez G. Zimbardo A. Bovet A. Fasoli K. Gustafson S. Perri P. Ricci F. Valentini 《Space Science Reviews》2013,178(2-4):233-270
Understanding transport of thermal and suprathermal particles is a fundamental issue in laboratory, solar-terrestrial, and astrophysical plasmas. For laboratory fusion experiments, confinement of particles and energy is essential for sustaining the plasma long enough to reach burning conditions. For solar wind and magnetospheric plasmas, transport properties determine the spatial and temporal distribution of energetic particles, which can be harmful for spacecraft functioning, as well as the entry of solar wind plasma into the magnetosphere. For astrophysical plasmas, transport properties determine the efficiency of particle acceleration processes and affect observable radiative signatures. In all cases, transport depends on the interaction of thermal and suprathermal particles with the electric and magnetic fluctuations in the plasma. Understanding transport therefore requires us to understand these interactions, which encompass a wide range of scales, from magnetohydrodynamic to kinetic scales, with larger scale structures also having a role. The wealth of transport studies during recent decades has shown the existence of a variety of regimes that differ from the classical quasilinear regime. In this paper we give an overview of nonclassical plasma transport regimes, discussing theoretical approaches to superdiffusive and subdiffusive transport, wave–particle interactions at microscopic kinetic scales, the influence of coherent structures and of avalanching transport, and the results of numerical simulations and experimental data analyses. Applications to laboratory plasmas and space plasmas are discussed. 相似文献
196.
J. Mazur L. Friesen A. Lin D. Mabry N. Katz Y. Dotan J. George J. B. Blake M. Looper M. Redding T. P. O’Brien J. Cha A. Birkitt P. Carranza M. Lalic F. Fuentes R. Galvan M. McNab 《Space Science Reviews》2013,179(1-4):221-261
The Relativistic Proton Spectrometer (RPS) on the Radiation Belt Storm Probes spacecraft is a particle spectrometer designed to measure the flux, angular distribution, and energy spectrum of protons from ~60 MeV to ~2000 MeV. RPS will investigate decades-old questions about the inner Van Allen belt proton environment: a nearby region of space that is relatively unexplored because of the hazards of spacecraft operation there and the difficulties in obtaining accurate proton measurements in an intense penetrating background. RPS is designed to provide the accuracy needed to answer questions about the sources and losses of the inner belt protons and to obtain the measurements required for the next-generation models of trapped protons in the magnetosphere. In addition to detailed information for individual protons, RPS features count rates at a 1-second timescale, internal radiation dosimetry, and information about electrostatic discharge events on the RBSP spacecraft that together will provide new information about space environmental hazards in the Earth’s magnetosphere. 相似文献
197.
Yu. V. Klochkov A. P. Nikolaev A. A. Shubovich S. S. Marchenko 《Russian Aeronautics (Iz VUZ)》2013,56(4):327-334
In this paper, we present an algorithm for geometrically nonlinear finite element analysis of the shells of revolution. Use is made of the most proper algorithms for vector interpolation of displacements through the nodal unknowns and an efficient algorithm for obtaining the stress-strain increment relation at a step of loading. By comparing the results of analyzing a geometrically nonlinear shell of revolution obtained on the basis of the ANSYS software with the scalar interpolation of displacements with those obtained on the basis of an author-developed finite element, it has been shown that application of the FEM vector displacement interpolation leads to increasing the accuracy of the finite element solutions in analyzing the stress-strain state of the geometrically nonlinear shells. 相似文献
198.
199.
In this paper we review the possible mechanisms for production of non-thermal electrons which are responsible for the observed
non-thermal radiation in clusters of galaxies. Our primary focus is on non-thermal Bremsstrahlung and inverse Compton scattering,
that produce hard X-ray emission. We first give a brief review of acceleration mechanisms and point out that in most astrophysical
situations, and in particular for the intracluster medium, shocks, turbulence and plasma waves play a crucial role. We also
outline how the effects of the turbulence can be accounted for. Using a generic model for turbulence and acceleration, we
then consider two scenarios for production of non-thermal radiation. The first is motivated by the possibility that hard X-ray
emission is due to non-thermal Bremsstrahlung by nonrelativistic particles and attempts to produce non-thermal tails by accelerating
the electrons from the background plasma with an initial Maxwellian distribution. For acceleration rates smaller than the
Coulomb energy loss rate, the effect of energising the plasma is to primarily heat the plasma with little sign of a distinct
non-thermal tail. Such tails are discernible only for acceleration rates comparable or larger than the Coulomb loss rate.
However, these tails are accompanied by significant heating and they are present for a short time of <106 years, which is also the time that the tail will be thermalised. A longer period of acceleration at such rates will result
in a runaway situation with most particles being accelerated to very high energies. These more exact treatments confirm the
difficulty with this model, first pointed out by Petrosian (Astrophys. J. 557:560, 2001). Such non-thermal tails, even if possible, can only explain the hard X-ray but not the radio emission which needs GeV or
higher energy electrons. For these and for production of hard X-rays by the inverse Compton model, we need the second scenario
where there is injection and subsequent acceleration of relativistic electrons. It is shown that a steady state situation,
for example arising from secondary electrons produced from cosmic ray proton scattering by background protons, will most likely
lead to flatter than required electron spectra or it requires a short escape time of the electrons from the cluster. An episodic
injection of relativistic electrons, presumably from galaxies or AGN, and/or episodic generation of turbulence and shocks
by mergers can result in an electron spectrum consistent with observations but for only a short period of less than one billion
years. 相似文献
200.
Non-thermal components are key ingredients for understanding clusters of galaxies. In the hierarchical model of structure
formation, shocks and large-scale turbulence are unavoidable in the cluster formation processes. Understanding the amplification
and evolution of the magnetic field in galaxy clusters is necessary for modelling both the heat transport and the dissipative
processes in the hot intra-cluster plasma. The acceleration, transport and interactions of non-thermal energetic particles
are essential for modelling the observed emissions. Therefore, the inclusion of the non-thermal components will be mandatory
for simulating accurately the global dynamical processes in clusters. In this review, we summarise the results obtained with
the simulations of the formation of galaxy clusters which address the issues of shocks, magnetic field, cosmic ray particles
and turbulence. 相似文献