首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10454篇
  免费   19篇
  国内免费   43篇
航空   4853篇
航天技术   3567篇
综合类   33篇
航天   2063篇
  2021年   93篇
  2019年   65篇
  2018年   260篇
  2017年   175篇
  2016年   147篇
  2015年   69篇
  2014年   242篇
  2013年   297篇
  2012年   304篇
  2011年   469篇
  2010年   339篇
  2009年   501篇
  2008年   542篇
  2007年   343篇
  2006年   238篇
  2005年   311篇
  2004年   284篇
  2003年   312篇
  2002年   223篇
  2001年   332篇
  2000年   208篇
  1999年   243篇
  1998年   280篇
  1997年   184篇
  1996年   255篇
  1995年   326篇
  1994年   302篇
  1993年   167篇
  1992年   244篇
  1991年   86篇
  1990年   86篇
  1989年   215篇
  1988年   88篇
  1987年   89篇
  1986年   100篇
  1985年   287篇
  1984年   225篇
  1983年   187篇
  1982年   211篇
  1981年   297篇
  1980年   82篇
  1979年   63篇
  1978年   76篇
  1977年   62篇
  1976年   53篇
  1975年   71篇
  1974年   66篇
  1973年   54篇
  1972年   52篇
  1970年   61篇
排序方式: 共有10000条查询结果,搜索用时 390 毫秒
761.
We have reconstructed the uncontrolled rotational motion of the Progress M-29M transport cargo spacecraft in the single-axis solar orientation mode (the so-called sunward spin) and in the mode of the gravitational orientation of a rotating satellite. The modes were implemented on April 3–7, 2016 as a part of preparation for experiments with the DAKON convection sensor onboard the Progress spacecraft. The reconstruction was performed by integral statistical techniques using the measurements of the spacecraft’s angular velocity and electric current from its solar arrays. The measurement data obtained in a certain time interval have been jointly processed using the least-squares method by integrating the equations of the spacecraft’s motion relative to the center of mass. As a result of processing, the initial conditions of motion and parameters of the mathematical model have been estimated. The motion in the sunward spin mode is the rotation of the spacecraft with an angular velocity of 2.2 deg/s about the normal to the plane of solar arrays; the normal is oriented toward the Sun or forms a small angle with this direction. The duration of the mode is several orbit passes. The reconstruction has been performed over time intervals of up to 1 h. As a result, the actual rotational motion of the spacecraft relative to the Earth–Sun direction was obtained. In the gravitational orientation mode, the spacecraft was rotated about its longitudinal axis with an angular velocity of 0.1–0.2 deg/s; the longitudinal axis executed small oscillated relative to the local vertical. The reconstruction of motion relative to the orbital coordinate system was performed in time intervals of up to 7 h using only the angularvelocity measurements. The measurements of the electric current from solar arrays were used for verification.  相似文献   
762.
763.
The problem of control of the on-board microgravity environment in order to extend the service life of the long-term space station has been discussed. Software developed for the ISS and the results of identifying dynamic models and external impacts based on telemetry data have been presented. Proposals for controlling the onboard microgravity environment for future long-term space stations have been formulated.  相似文献   
764.
765.
The results of numerical calculation of the dependences of the electron density, the eigenfrequency and the dielectric plasma permeability on the geometric parameters and the altitude of body motion in the near and far wake behind a thin conical body with a spherical nose blunting have been presented. The electron density maximum has been shown to be located in the region of the neck of the near wake behind the body, which determines the type of this region (supercritical or subcritical). This in turn affects the propagation of radio waves through this plasma region. A comparative analysis was performed for two different bodies with the same ballistic coefficient values. No characteristic distinctions were revealed in the values of electron density or the plasma eigenfrequency in the near and far wake behind these bodies. However, it has been shown that there are differences in the values of the distance from the bottom cross section to the neck of the near wake behind these bodies.  相似文献   
766.
In the paper, the problem of designing interplanetary trajectories with several swing-bys and deep-space maneuvers is solved using the method of virtual trajectories developed by the authors. The algorithms for the calculation of both heliocentric and planetocentric trajectory arcs are presented, including the case of resonant trajectories. The results of applying the method of virtual trajectories to the problem of designing an interplanetary transfer to Jupiter are given and compared with the baseline trajectories for the Juno, Europa Clipper, and Laplace missions.  相似文献   
767.
The simplest version of the method of detecting the single molecular scattering field based on the polarization measurements of the twilight sky background by all-sky cameras has been considered. The method can be used during transitive twilight (with solar zenith angles of 94°–98°), when effective single scattering occurs in the upper stratosphere and lower mesosphere. The long-term measurements conducted using this method in the Moscow region and Apatity make it possible to determine the temperature of these atmospheric layers and estimate the contribution and properties of multiple scattering during the transitive twilight.  相似文献   
768.
The dynamics of the rotational motion of a satellite moving in the central Newtonian field of force over a circular orbit under the effect of gravitational and active damping torques, which depend on the satellite angular velocity projections, has been investigated. The paper proposes a method of determining all equilibrium positions (equilibrium orientations) of a satellite in the orbital coordinate system for specified values of damping coefficients and principal central moments of inertia. The conditions of their existence have been obtained. For a zero equilibrium position where the axes of the satellite-centered coordinate system coincide with the axes of the orbital coordinate system, the necessary and sufficient conditions for asymptotic stability are obtained using the Routh–Hurwitz criterion. A detailed analysis of the regions where the conditions of the asymptotic stability of a zero equilibrium position are fulfilled have been obtained depending on three dimensionless parameters of the problem, and the numerical study of the process of attenuation of satellite’s spatial oscillations for various damping coefficients has been carried out. It has been shown that there is a wide range of damping parameters from which, by choosing the necessary values, one can provide the asymptotic stability of satellite’s zero equilibrium position in the orbital coordinate system.  相似文献   
769.
770.
In July 2016, NASA’s Juno mission becomes the first spacecraft to enter polar orbit of Jupiter and venture deep into unexplored polar territories of the magnetosphere. Focusing on these polar regions, we review current understanding of the structure and dynamics of the magnetosphere and summarize the outstanding issues. The Juno mission profile involves (a) a several-week approach from the dawn side of Jupiter’s magnetosphere, with an orbit-insertion maneuver on July 6, 2016; (b) a 107-day capture orbit, also on the dawn flank; and (c) a series of thirty 11-day science orbits with the spacecraft flying over Jupiter’s poles and ducking under the radiation belts. We show how Juno’s view of the magnetosphere evolves over the year of science orbits. The Juno spacecraft carries a range of instruments that take particles and fields measurements, remote sensing observations of auroral emissions at UV, visible, IR and radio wavelengths, and detect microwave emission from Jupiter’s radiation belts. We summarize how these Juno measurements address issues of auroral processes, microphysical plasma physics, ionosphere-magnetosphere and satellite-magnetosphere coupling, sources and sinks of plasma, the radiation belts, and the dynamics of the outer magnetosphere. To reach Jupiter, the Juno spacecraft passed close to the Earth on October 9, 2013, gaining the necessary energy to get to Jupiter. The Earth flyby provided an opportunity to test Juno’s instrumentation as well as take scientific data in the terrestrial magnetosphere, in conjunction with ground-based and Earth-orbiting assets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号