首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9897篇
  免费   16篇
  国内免费   27篇
航空   4694篇
航天技术   3239篇
综合类   200篇
航天   1807篇
  2021年   91篇
  2019年   57篇
  2018年   204篇
  2017年   130篇
  2016年   130篇
  2015年   56篇
  2014年   205篇
  2013年   260篇
  2012年   269篇
  2011年   400篇
  2010年   275篇
  2009年   433篇
  2008年   458篇
  2007年   274篇
  2006年   198篇
  2005年   235篇
  2004年   245篇
  2003年   293篇
  2002年   292篇
  2001年   376篇
  2000年   187篇
  1999年   232篇
  1998年   284篇
  1997年   174篇
  1996年   253篇
  1995年   303篇
  1994年   284篇
  1993年   171篇
  1992年   223篇
  1991年   92篇
  1990年   101篇
  1989年   225篇
  1988年   101篇
  1987年   101篇
  1986年   99篇
  1985年   276篇
  1984年   222篇
  1983年   183篇
  1982年   195篇
  1981年   306篇
  1980年   95篇
  1979年   83篇
  1978年   95篇
  1977年   68篇
  1976年   61篇
  1975年   84篇
  1974年   73篇
  1972年   80篇
  1971年   69篇
  1970年   60篇
排序方式: 共有9940条查询结果,搜索用时 15 毫秒
701.
In this paper, using the Gauss-Rotation model (GR model), we analyse the UV C IV resonance lines in the spectra of 20 Oe-stars of different spectral subtypes, in order to detect the structure of C IV region. We study the presence and behavior of absorption clouds and analyse their characteristics. From this analysis we can calculate the values of a group of physical parameters, such as the apparent rotational and radial velocities, the random velocities of the thermal motions of the ions, the Full Width at Half Maximum (FWHM), the optical depth, as well as the absorbed energy and the column density of the independent regions of matter, which produce the main and the satellite clouds of the studied spectral lines. Finally, we present the relations between these physical parameters and the spectral subtypes of the studied stars and we give our results about the structure of the C IV region in their atmosphere.  相似文献   
702.
703.
Surface chemistry of airless bodies in the solar system can be derived from remote X-ray spectral measurements from an orbiting spacecraft. X-rays from planetary surfaces are excited primarily by solar X-rays. Several experiments in the past have used this technique of X-ray fluorescence for deriving abundances of the major rock forming elements. The Chandrayaan-2 orbiter carries an X-ray fluorescence experiment named CLASS that is designed based on results from its predecessor C1XS flown on Chandrayaan-1. We discuss the new aspects of lunar science that can be potentially achieved with CLASS.  相似文献   
704.
In accordance with the United Nations Outer Space Treaties [United Nations, Agreement Governing the Activities of States on the Moon and Other Celestial Bodies, UN doc A/RES/34/68, resolution 38/68 of December 1979], currently maintained and promulgated by the Committee on Space Research [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005, http://www.cosparhq.org/scistr/PPPolicy.htm], missions exploring the Solar system must meet planetary protection requirements. Planetary protection aims to protect celestial bodies from terrestrial contamination and to protect the Earth environment from potential biological contamination carried by returned samples or space systems that have been in contact with an extraterrestrial environment. From an exobiology perspective, Mars is one of the major targets, and several missions are currently in operation, in transit, or scheduled for its exploration. Some of them include payloads dedicated to the detection of life or traces of life. The next step, over the coming years, will be to return samples from Mars to Earth, with a view to increasing our knowledge in preparation for the first manned mission that is likely to take place within the next few decades. Robotic missions to Mars shall meet planetary protection specifications, currently well documented, and planetary protection programs are implemented in a very reliable manner given that experience in the field spans some 40 years. With regards to sample return missions, a set of stringent requirements has been approved by COSPAR [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005, http://www.cosparhq.org/scistr/PPPolicy.htm], and technical challenges must now be overcome in order to preserve the Earth’s biosphere from any eventual contamination risk. In addition to the human dimension of the mission, sending astronauts to Mars will entail meeting all these constraints. Astronauts present huge sources of contamination for Mars and are also potential carriers of biohazardous material on their return to Earth. If they were to have the misfortune of being contaminated, they themselves would become a biohazard, and, as a consequence, in addition to the technical constraints, human and ethical considerations must also be taken into account.  相似文献   
705.
The main purposes of experiment “Obstanovka” (“Environment” in Russian) consisting of several instruments are to measure a set of electromagnetic and plasma phenomena characterizing the space weather conditions, and to evaluate how such a big and highly energy consuming body as the International Space Station disturbs the surrounding plasma, and how the station itself is charged due to the operation of so many instruments, solar batteries, life supporting devices, etc. Two identical Langmuir electrostatic probes are included in the experiment “Obstanovka”. In this paper the Langmuir probes for “Obstanovka” experiment are described, including the choice of geometry (spherical or cylindrical), a more reliable method for the sweep voltage generation, an adaptive algorithm for the probe’s operation. Special attention is paid to the possibility for remote upgrading of the instrument from the ground using the standard communication channels.  相似文献   
706.
分析了2004年3月13日12:15到12:25UT期间TC-1和Cluster卫星簇的磁通门磁力计(FGM)和电子/电流试验仪(PEACE)的联合观测数据.在此期间,TC-1卫星位于日下点以南的磁层顶附近的磁鞘中,并在12:19UT左右观测到了一个典型的先正后负的磁鞘磁通量传输事件(FTE);而Cluster卫星簇位于北半球日侧高纬磁层项附近,并于12:23UT左右穿出磁层顶进入磁鞘,且在12:21 UT左右也观测到了一个典型的先正后负的磁层FTE.比较分析发现此两个FTE具有类似的磁场结构和等离子体特征,可能是同一个北向运动的FTE先后被TC-1和Cluster卫星观测到.利用Cluster 4颗卫星的多点同时观测数据,采用最小方向微分法和时空微分方法,推断Cluster卫星观测的这个FTE是尺度大小约为1.21Re的准二维结构,其运动方向为东北方向,与Cooling模型预测方向基本一致.利用Cooling模型的预测,推算了TC-1卫星在12:19UT观测的FTE的运动速度和尺度,进而得出随着通量管的极向运动,其速度和尺度均有所增加.  相似文献   
707.
The observed ionospheric F2 critical frequency (foF2) values over a South Africa mid-latitude station, Grahamstown, (geographic coordinates: 33.3°S, 26.5°E), were analysed and compared with International Reference Ionosphere (IRI) model, using the CCIR (Comite´ Consultatif International des Radio communications) and URSI (Union Radio-Scientifique Internationale) coefficients, during four geomagnetically disturbed days in the year 2000. These days are April 5, May 23, August 10 and September 15. The data were analysed for five days around the storm day. Comparisons between the IRI-2001 predicted foF2 values, using both CCIR and URSI coefficients and the observed values are shown with their root-mean-square error (RMSE) and the relative deviation module mean (rdmm) for the various storm periods. The CCIR option performed more accurately than the URSI option.  相似文献   
708.
The Athens Neutron Monitor Data Processing (ANMODAP) Center recorded an unusual Forbush decrease with a sharp enhancement of cosmic ray intensity right after the main phase of the Forbush decrease on 16 July 2005, followed by a second decrease within less than 12 h. This exceptional event is neither a ground level enhancement nor a geomagnetic effect in cosmic rays. It rather appears as the effect of a special structure of interplanetary disturbances originating from a group of coronal mass ejections (CMEs) in the 13–14 July 2005 period. The initiation of the CMEs was accompanied by type IV radio bursts and intense solar flares (SFs) on the west solar limb (AR 786); this group of energetic phenomena appears under the label of Solar Extreme Events of July 2005. We study the characteristics of these events using combined data from Earth (the ARTEMIS IV radioheliograph, the Athens Neutron Monitor (ANMODAP)), space (WIND/WAVES) and data archives. We propose an interpretation of the unusual Forbush profile in terms of a magnetic structure and a succession of interplanetary shocks interacting with the magnetosphere.  相似文献   
709.
This study presents several observations of the Cluster spacecraft on September 24, 2003 around 15:10 UT, which show necessary prerequisites and consequences for the formation of the so-called modified-two-stream instability (MTSI). Theoretical studies suggest that the plasma is MTSI unstable if (1) a relative drift of electrons and ions is present, which exceeds the Alfvèn speed, and (2) this relative drift or current is in the cross-field direction. As consequences of the formation of a MTSI one expects to observe (1) a field-aligned electron beam, (2) heating of the plasma, and (3) an enhancement in the B-wave spectrum at frequencies in the range of the lower-hybrid-frequency (LHF). In this study we use prime parameter data of the CIS and PEACE instruments onboard the Cluster spacecraft to verify the drift velocities of ions and electrons, FGM data to calculate the expected LHF and Alfvèn velocity, and the direction of the current. The B-wave spectrum is recorded by the STAFF instrument of Cluster. Finally, a field aligned beam of electrons is observed by 3D measurements of the IES instrument of the RAPID unit. Observations are verified using a theoretical model showing the build-up of a MTSI under the given circumstances.  相似文献   
710.
The monthly hourly medians of maximum electron density, NmF2, at two Pakistani ionospheric stations, Karachi and Islamabad, have been determined for solar minimum (1996) and solar maximum (2000) and compared with IRI predictions using the URSI coefficients. At night and pre-noon period the NmF2 values at both stations are almost equal during the 2 years. However, at post-noon the values at Karachi are considerably larger than those at Islamabad due to the equatorial or geomagnetic anomaly. Karachi (geomag. coord. 16.44°N, 139.08°E) lies near the region of the equatorial anomaly (+20 and −20 geomagnetic latitude), so most of the NmF2 values at Karachi are larger than those at Islamabad (geomag. coord. 24.46°N, 145.67°E). The maximum monthly values of NmF2 show a semi-annual variation at Karachi and Islamabad both during 1996 and 2000 as predicted by IRI.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号