首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8087篇
  免费   41篇
  国内免费   29篇
航空   3621篇
航天技术   2822篇
综合类   30篇
航天   1684篇
  2021年   90篇
  2019年   61篇
  2018年   188篇
  2017年   136篇
  2016年   131篇
  2015年   58篇
  2014年   202篇
  2013年   249篇
  2012年   245篇
  2011年   377篇
  2010年   275篇
  2009年   402篇
  2008年   436篇
  2007年   263篇
  2006年   194篇
  2005年   221篇
  2004年   218篇
  2003年   244篇
  2002年   177篇
  2001年   252篇
  2000年   151篇
  1999年   179篇
  1998年   219篇
  1997年   143篇
  1996年   192篇
  1995年   230篇
  1994年   203篇
  1993年   135篇
  1992年   176篇
  1991年   56篇
  1990年   58篇
  1989年   162篇
  1988年   74篇
  1987年   71篇
  1986年   71篇
  1985年   217篇
  1984年   177篇
  1983年   132篇
  1982年   139篇
  1981年   236篇
  1980年   77篇
  1979年   54篇
  1978年   64篇
  1977年   45篇
  1975年   61篇
  1974年   47篇
  1973年   38篇
  1972年   41篇
  1971年   41篇
  1970年   40篇
排序方式: 共有8157条查询结果,搜索用时 515 毫秒
101.
Engel KA 《Acta Astronautica》2005,57(2-8):277-287
The Space Elevator (SE) concept has begun to receive an increasing amount of attention within the space community over the past couple of years and is no longer widely dismissed as pure science fiction. In light of the renewed interest in a, possibly sustained, human presence on the Moon and the fact that transportation and logistics form the bottleneck of many conceivable lunar missions, it is interesting to investigate what role the SE could eventually play in implementing an efficient Earth to Moon transportation system. The elevator allows vehicles to ascend from Earth and be injected into a trans-lunar trajectory without the use of chemical thrusters, thus eliminating gravity loss, aerodynamic loss and the need of high thrust multistage launch systems. Such a system therefore promises substantial savings of propellant and structural mass and could greatly increase the efficiency of Earth to Moon transportation. This paper analyzes different elevator-based trans-lunar transportation scenarios and characterizes them in terms of a number of benchmark figures. The transportation scenarios include direct elevator-launched trans-lunar trajectories, elevator launched trajectories via L1 and L2, as well as launch from an Earth-based elevator and subsequent rendezvous with lunar elevators placed either on the near or on the far side of the Moon. The benchmark figures by which the different transfer options are characterized and evaluated include release radius (RR), required delta v, transfer times as well as other factors such as accessibility of different lunar latitudes, frequency of launch opportunities and mission complexity. The performances of the different lunar transfer options are compared with each other as well as with the performance of conventional mission concepts, represented by Apollo.  相似文献   
102.
We present the results of an experimental study of aqueous corrosion of Fe-phosphide under conditions relevant to the early Earth. The results strongly suggest that iron meteorites were an important source of reactive phosphorus (P), a requirement for the formation of P-based life. We further demonstrate that iron meteorites were an abundant source of phosphide minerals early in Earth history. Phosphide corrosion was studied in five different solutions: deionized water, deionized water buffered with sodium bicarbonate, deionized water with dissolved magnesium and calcium chlorides, deionized water containing ethanol and acetic acid, and deionized water containing the chlorides, ethanol, and acetic acid. Experiments were performed in the presence of both air and pure Ar gas to evaluate the effect of atmospheric chemistry. Phosphide corrosion in deionized water results in a metastable mixture of mixed-valence, P-bearing ions including pyrophosphate and triphosphate, key components for metabolism in modern life. In a pH-buffered solution of NaHCO(3), the condensed and reduced species diphosphonate is an abundant corrosion product. Corrosion in ethanol- and acetic acid-containing solutions yields additional P-bearing organic molecules, including acetyl phosphonate and a cyclic triphosphorus molecule. Phosphonate is a major corrosion product of all experiments and is the only P-bearing molecule that persists in solutions with high concentrations of magnesium and calcium chlorides, which suggests that phosphonate may have been a primitive oceanic source of P. The stability and reactivity of phosphonate and hypophosphite in solution were investigated to elucidate reaction mechanisms and the role of mineral catalysts on P-solution chemistry. Phosphonate oxidation is rapid in the presence of Fe metal but negligible in the presence of magnetite and in the control sample. The rate of hypophosphite oxidation is independent of reaction substrate.  相似文献   
103.
The control of water content and water movement in granular substrate-based plant root systems in microgravity is a complex problem. Improper water and oxygen delivery to plant roots has delayed studies of the effects of microgravity on plant development and the use of plants in physical and mental life support systems. Our international effort (USA, Russia and Bulgaria) has upgraded the plant growth facilities on the Mir Orbital Station (OS) and used them to study the full life cycle of plants. The Bulgarian-Russian-developed Svet Space Greenhouse (SG) system was upgraded on the Mir OS in 1996. The US developed Gas Exchange Measurement System (GEMS) greatly extends the range of environmental parameters monitored. The Svet-GEMS complex was used to grow a fully developed wheat crop during 1996. The growth rate and development of these plants compared well with earth grown plants indicating that the root zone water and oxygen stresses that have limited plant development in previous long-duration experiments have been overcome. However, management of the root environment during this experiment involved several significant changes in control settings as the relationship between the water delivery system, water status sensors, and the substrate changed during the growth cycles.  相似文献   
104.
In 1994–1995 Lavochkin Association (Russia) together with the other enterprises in accordance with technical requirements of the Russian Space agency, developed a new Russian communication satellite of a small class that will operate in both the geostationary (GSO) and high-elliptical (HEO) orbits. This satellite may be injected into operational orbits using a SOYUZ-2 launch vehicle (LV) and a FREGAT upper stage (US) from Plesetsk and Baykonur space launch sites (SLS).The main reason for creating such a satellite was to decrease the cost of the support and development of the Russian communication geostationary satellites group.Russian satellites Horizont, Express, Ekran and Gals, which operate in GSO, are the basis of the space segment for communications, radio and TV broadcasting. All of these satellites are injected into GSO by the PROTON LV. PROTON is a launch vehicle of a heavy class. The use of a middle class LV instead of a heavy class will allow to reduce considerably the launch cost. The change of a heavy class LV to a LV of middle class determined one economic reason for this project. Besides, the opportunity to launch S/C into GSO from Russian Plesetsk SLS increases the independence of Russia in the domain of space communications, despite the presence of the contract with Kazachstan about the rent of Baykonur SLS. Finally, use of small satellites with a rather small number of transponders is more effective than the use of big satellites. It will allow also to increase a satellite group (by the launch of additional satellites) precisely in accordance to the development of the ground segment.  相似文献   
105.
Extra-vehicular activity (EVA) has a significant role during extended space flights. It demonstrates that humans can survive and perform useful work outside the Orbital Space Stations (OSS) while wearing protective space suits (SS). When the International Space Station 'Alpha' (ISSA) is fully operational, EVA assembly, installation, maintenance and repair operations will become an everyday repetitive work activity in space. It needs new ergonomic evaluation of the work/rest schedule for an increasing of the labor amount per EVA hour. The metabolism assessment is a helpful method to control the productivity of the EVA astronaut and to optimize the work/rest regime. Three following methods were used in Russia to estimate real-time metabolic rates during EVA: 1. Oxygen consumption, computed from the pressure drop in a high pressure bottle per unit time (with actual thermodynamic oxygen properties under high pressure and oxygen leakage taken into account). 2. Carbon dioxide production, computed from CO2 concentration at the contaminant control cartridge and gas flow rate in the life support subsystem closed loop (nominal mode) or gas leakage in the SS open loop (emergency mode). 3. Heat removal, computed from the difference between the temperatures of coolant water or gas and its flow rate in a unit of time (with assumed humidity and wet oxygen state taken into account). Comparison of heat removal values with metabolic rates enables us to determine the thermal balance during an operative medical control of EVA at "Salyut-6", "Salyut-7" and "Mir" OSS. Complex analysis of metabolism, body temperature and heat rate supports a differential diagnosis between emotional and thermal components of stress during EVA. It gives a prognosis of human homeostasis during EVA. Available information has been acquired into an EVA data base which is an effective tool for ergonomical optimization.  相似文献   
106.
A relatively general formulation for studying the dynamics and control of an arbitrary spacecraft with interconnected flexible bodies has been developed accounting for transient system properties, shift in the center of mass, shear deformations, rotary inertias and geometric nonlinearities. This self-contained, comprehensive, numerical algorithm using system modes is applicable to a large class of spacecraft configurations of contemporary and future interests. Here, versatility of the approach is demonstrated through the dynamics and control studies aimed at the evolving Space Station Freedom.  相似文献   
107.
In 1994-1995 Lavochkin Association (Russia) together with the other enterprises in accordance with technical requirements of the Russian Space agency, developed a new Russian communication satellite of a small class that will operate in both the geostationary (GSO) and high-elliptical (HEO) orbits. This satellite may be injected into operational orbits using a SOYUZ-2 launch vehicle (LV) and a FREGAT upper stage (US) from Plesetsk and Baykonur space launch sites (SLS).The main reason for creating such a satellite was to decrease the cost of the support and development of the Russian communication geostationary satellites group.Russian satellites Horizont, Express, Ekran and Gals, which operate in GSO, are the basis of the space segment for communications, radio and TV broadcasting. All of these satellites are injected into GSO by the PROTON LV. PROTON is a launch vehicle of a heavy class. The use of a middle class LV instead of a heavy class will allow to reduce considerably the launch cost. The change of a heavy class LV to a LV of middle class determined one economic reason for this project. Besides, the opportunity to launch S/C into GSO from Russian Plesetsk SLS increases the independence of Russia in the domain of space communications, despite the presence of the contract with Kazachstan about the rent of Baykonur SLS. Finally, use of small satellites with a rather small number of transponders is more effective than the use of big satellites. It will allow also to increase a satellite group (by the launch of additional satellites) precisely in accordance to the development of the ground segment.  相似文献   
108.
The major goals of NASA's Terrestrial Planet Finder (TPF) and the European Space Agency's Darwin missions are to detect terrestrial-sized extrasolar planets directly and to seek spectroscopic evidence of habitable conditions and life. Here we recommend wavelength ranges and spectral features for these missions. We assess known spectroscopic molecular band features of Earth, Venus, and Mars in the context of putative extrasolar analogs. The preferred wavelength ranges are 7-25 microns in the mid-IR and 0.5 to approximately 1.1 microns in the visible to near-IR. Detection of O2 or its photolytic product O3 merits highest priority. Liquid H2O is not a bioindicator, but it is considered essential to life. Substantial CO2 indicates an atmosphere and oxidation state typical of a terrestrial planet. Abundant CH4 might require a biological source, yet abundant CH4 also can arise from a crust and upper mantle more reduced than that of Earth. The range of characteristics of extrasolar rocky planets might far exceed that of the Solar System. Planetary size and mass are very important indicators of habitability and can be estimated in the mid-IR and potentially also in the visible to near-IR. Additional spectroscopic features merit study, for example, features created by other biosignature compounds in the atmosphere or on the surface and features due to Rayleigh scattering. In summary, we find that both the mid-IR and the visible to near-IR wavelength ranges offer valuable information regarding biosignatures and planetary properties; therefore both merit serious scientific consideration for TPF and Darwin.  相似文献   
109.
For Space Transportation System (i.e. Space Shuttle) launched satellites destined for a Geosynchronous Earth Orbit (GEO), there is a need for cost-effective, versatile propulsion systems to provide the perigee burn, i.e. to boost the satellite from Low Earth Orbit (LEO) to Geosynchronous Transfer Orbit (GTO). Surveys of commercial spacecraft activities and future GEO satellite requirements indicate that a spacecraft propulsion system that will provide the perigee burn for a broad range of future commercial satellites would have an excellent market potential.Parametric studies to investigate and define attractive perigee-burn upper propulsion systems (i.e. an Upper Propulsion Stage, or a UPS) are presented. The feasibility and payload capacilities that could be provided by a UPS assembled from essentially off-the-shelf components and subsystems, and the benefits that could be achieved by using major subsystems specifically tailored for the application are presented. The results indicate that attractive UPS configurations can be defined using either off-the-shelf or optimized major subsystems.  相似文献   
110.
The Ariane transfer vehicle (ATV), an Ariane 5 borne, unmanned propulsion vehicle, is designed to transport the logistics needed to resupply the International Space Station (ISS) and the man tended free flyer (MTFF) step 2 with pressurized and unpressurized cargo and to dispose the waste. The ATV is an expendable vehicle and is disposed of by a safe atmospheric burn up. In accordance with the AR5 schedule it should be operational in 1996 for missions toward ISS and beyond the year 2000 for MTFF 2 missions. The main constituents of the proposed ATV are the modified AR5 third stage L5, an upgraded VEB steering the launcher as well as the ATV and the P/L-adaptor providing mechanical and umbilical links to the payload. The mechanical part of the RVD-kit will be placed on the payload-module, the main RVD sensors are located on the adaptor and the needed computer intelligence will be integrated on the VEB. To minimize the development, and recurring costs, the ATV concept fully complies to the idea of maximum use of existing hardware and software, mainly from the AR5, Hermes and Columbus programs thus minimizing development and recurring costs. The ATV is compatible to ISS, MTFF and OMV and is able to transport logistic modules compatible with NSTS and U.S.-expendable launchers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号