首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11172篇
  免费   21篇
  国内免费   46篇
航空   5230篇
航天技术   3941篇
综合类   37篇
航天   2031篇
  2021年   96篇
  2019年   70篇
  2018年   227篇
  2017年   155篇
  2016年   140篇
  2015年   67篇
  2014年   258篇
  2013年   316篇
  2012年   310篇
  2011年   453篇
  2010年   319篇
  2009年   517篇
  2008年   562篇
  2007年   321篇
  2006年   253篇
  2005年   306篇
  2004年   304篇
  2003年   357篇
  2002年   242篇
  2001年   370篇
  2000年   224篇
  1999年   276篇
  1998年   315篇
  1997年   216篇
  1996年   281篇
  1995年   353篇
  1994年   352篇
  1993年   182篇
  1992年   264篇
  1991年   99篇
  1990年   105篇
  1989年   245篇
  1988年   102篇
  1987年   114篇
  1986年   107篇
  1985年   319篇
  1984年   240篇
  1983年   206篇
  1982年   239篇
  1981年   329篇
  1980年   98篇
  1979年   79篇
  1978年   87篇
  1977年   70篇
  1976年   62篇
  1975年   84篇
  1974年   75篇
  1973年   59篇
  1972年   66篇
  1970年   63篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
941.
Red-cell mass determinations were performed before and after the first two Skylab missions. The data showed a 14% mean decrease in red-cell mass after the 28-day mission and a 12% mean decrease after the 59-day mission. The red-cell mass returned to premission levels more slowly after the shorter (28-day) than after the longer mission. Plasma volume decreases were found after each mission. with the crew from the longer mission showing the greater change (13% vs. 8.4%). Postmission decreases in red-cell mass and plasma volume have been a general finding in crewmen who return from short or long spaceflight.  相似文献   
942.
In order to stabilize the altitude calculation in an inertial navigation system, an altimeter is commonly used. In a conventional local-level mechanization, this is generally accomplished by correcting the vertical channel integrators with the difference between the inertial system and altimeter indication of vertical position. However, in a space-stable system the procedure is not as clear since a vertical channel is not physically present. Three altitude damping mechanizations for a space-stable inertial navigation system are proposed. The equivalent local-level mechanizations are then found by comparing error propagation equations in a common coordinate frame.  相似文献   
943.
The influence of sudden increases of electron content on the accurate determination of the position of a satellite is investigated based on a spherically stratified ionospheric model. Using the total electron content information from Faraday rotation measurements, a procedure is presented whereby the corrections of satellite position due to the unpredicted electron increase can be accounted for without the need to know the spatial distribution of the additional electrons.  相似文献   
944.
We discuss the origin, evolution and fate of low-mass Algols (LMA) that have components with initial masses less than 2.5 M0. The semi-major axes of orbits of pre-LMA do not exceed 20–25 R0. The rate of formation of Algol-type stars is 0.01/year. Magnetic stellar winds may be the factor that determines the evolution of LMA. Most LMA end their lives as double helium degenerate dwarfs with M1/M2 0.88 (like L870-2). Some of them even merge through angular momentum loss caused by gravitational waves.  相似文献   
945.
The development of the new CIRA will require the combination of winds from many sources, e.g. rockets (ROCOB) up to ~60 km, and radar winds ~60–110 km. Difficulties are that such rocket data have larger errors at 60–65 km, and tidal effects may become significant. Radar data for 60–80 km may also have tidal contamination, due to ? 16h of data per day: from 80–110 km tidal corrections are usually reliable.Comparisons are made between the unique Saskatoon MF radar set, which is continuous from mid 1978–1983, and the ROCOB data from Primrose Lake, which is only 340 km northwest. While the agreement is satisfactory, special care is required when matching the two regions: particular problems are the low rocket sampling rate, and the unexpectedly large amplitude of the diurnal tide. Important differences from the zonal winds of CIRA-72 emerge, especially in winter months. Meridional cross-sections differ from previous data models in the extent of the summer equatorward flow.  相似文献   
946.
A simple shock model for the acceleration of energetic particles in corotating interaction regions (CIR) in the solar wind is presented. Particles are accelerated at the forward and reverse shocks which bound the CIR by being compressed between the shock fronts and magnetic irregularities upstream from the shocks, or by being compressed between upstream irregularities and those downstream from the shocks. Particles also suffer adiabatic deceleration in the expanding solar wind, an effect not included in previous shock models for acceleration in CIR's. The model is able to account for the observed exponential spectra at earth, the observed behavior of the spectra with radial distance, the observed radial gradients in the intensity, and the observed differences in the intensity and spectra at the forward and reverse shocks.  相似文献   
947.
Developing systems provide unique opportunities for analyzing the effects of microgravity on animals. Several unusual types of cells as well as various extraordinary cellular behavior patterns characterize the embryos of most animals. Those features have been exploited as test systems for space flight. The data from previous experiments are reviewed, and considerations for the design of future experiments are presented.  相似文献   
948.
Two-dimensional calculations of ionization-shockwave propagation into a curved molecular cloud are presented. Density enhancement occurs due to the combined effects of cloud curvature and radiation flow. The star formation process is expected to be enhanced near the edges of irregularly shaped molecular clouds.Authors listed alphabetically  相似文献   
949.
This work is devoted to the derivation of the optical properties of the Venus atmosphere from “Venera-10” optical measurements. Within the framework of a two-layer model of Venus atmosphere it is found that in the spectral interval 0.52 – 0.85 μm the optical thickness of the upper cloud layer is ≈ 50 and the optical parameters of the lower layer are similar to the Rayleigh ones. Comparison is made between the measurements of radiation field within the atmosphere and the results of strict calculations. A preliminary conclusion is suggested that there are considerable numbers of aerosol particles with a radius ? 0.03 μm in the lower layer. The results of the upper boundary of the cloud layer is estimated to be ≈ 70 km.  相似文献   
950.
There is a general possibility of creation in space of large controlled mirror reflectors for solar and electromagnetic radiation with specific mass order of 1 g m?2 or less. Such reflectors may be used in space energetics for concentration of solar energy for its further conversion into microwave beam and transmission to the Earth. They can also be used to illuminate the Earth surface in a dark period with reflected sunlight, to control the weather, for research work and some other purposes. Such reflector is a good solar sail. The control of its orientation and position in space is performed using solar energy and light pressure without spending fuel delivered from the Earth. Its form is maintained by centrifugal forces and light pressure. The film strength permits concentrators with radii of several kilometres and nearly flat reflectors for lighting applications with radii of hundreds of metres. Large series of identical reflectors can be built in space using superthin film tape at assembly station. For a year more than a hundred reflectors with a diameter of 600 m can be assembled at such a station. The assembly station can be placed at the height of 1000 km. The reflectors transfer to synchronous or other orbit is performed using their sail-likeness. For realization of such reflectors one should solve a very difficult problem of superthin film mass production as well as assembly technology problems. Careful study and experimental checks of their lifetime should be also made.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号