首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7002篇
  免费   58篇
  国内免费   15篇
航空   3176篇
航天技术   2440篇
综合类   29篇
航天   1430篇
  2021年   79篇
  2019年   56篇
  2018年   169篇
  2017年   111篇
  2016年   115篇
  2015年   53篇
  2014年   179篇
  2013年   234篇
  2012年   222篇
  2011年   327篇
  2010年   235篇
  2009年   336篇
  2008年   368篇
  2007年   229篇
  2006年   164篇
  2005年   197篇
  2004年   183篇
  2003年   205篇
  2002年   146篇
  2001年   222篇
  2000年   137篇
  1999年   167篇
  1998年   190篇
  1997年   109篇
  1996年   173篇
  1995年   204篇
  1994年   191篇
  1993年   120篇
  1992年   151篇
  1991年   48篇
  1990年   51篇
  1989年   139篇
  1988年   59篇
  1987年   56篇
  1986年   63篇
  1985年   190篇
  1984年   152篇
  1983年   108篇
  1982年   118篇
  1981年   223篇
  1980年   50篇
  1979年   45篇
  1978年   50篇
  1977年   42篇
  1975年   51篇
  1974年   38篇
  1973年   33篇
  1972年   36篇
  1971年   35篇
  1970年   37篇
排序方式: 共有7075条查询结果,搜索用时 0 毫秒
181.
The presence and movement of plasma density fluctuations in the F-region of the ionosphere are studied by monitoring phase and amplitude of radio waves propagating through the region. In this paper, we have used weak scattering theory and assumed the plasma density fluctuations to behave like phase changing diffraction screen. Appropriate relations for scintillation index S4, and phase variance δ? are derived and computed for different parameters of the plasma density irregularities of the ionosphere. SROSS-C2 satellite in situ measurements of plasma density fluctuations, which provide direct information about the structure and morphology of irregularities that are responsible for scintillation of radio waves, were used first time to develop a scintillation model for low latitude. It is observed that the scintillation index S4 and phase variance δ? depends on the strength of the plasma turbulence. Finally, the results obtained from modeling are compared and discussed with the available recent results.  相似文献   
182.
The cytoskeleton is a complex network of fibers that is sensitive to environmental factors including microgravity and altered gravitational forces. Cellular functions such as transport of cell organelles depend on cytoskeletal integrity; regulation of cytoskeletal activity plays a role in cell maintenance, cell division, and apoptosis. Here we report cytoskeletal and mitochondria alterations in cultured human lymphocyte (Jurkat) cells after exposure to spaceflight and in insect cells of Drosophila melanogaster (Schneider S-1) after exposure to conditions created by clinostat rotation. Jurkat cells were flown on the space shuttle in Biorack cassettes while Schneider S-1 cells were exposed to altered gravity forces as produced by clinostat rotation. The effects of both treatments were similar in the different cell types. Fifty percent of cells displayed effects on the microtubule network in both cell lines. Under these experimental conditions mitochondria clustering and morphological alterations of mitochondrial cristae was observed to various degrees after 4 and 48 hours of culture. Jurkat cells underwent cell divisions during exposure to spaceflight but a large number of apoptotic cells was also observed. Similar results were obtained in Schneider S-1 cells cultured under clinostat rotation. Both cell lines displayed mitochondria abnormalities and mitochondria clustering toward one side of the cells which is interpreted to be the result of microtubule disruption and failure of mitochondria transport along microtubules. The number of mitochondria was increased in cells exposed to altered gravity while cristae morphology was severely affected indicating altered mitochondria function. These results show that spaceflight as well as altered gravity produced by clinostat rotation affects microtubule and mitochondria organization and results in increases in apoptosis. Grant numbers: NAG 10-0224, NAG2-985.  相似文献   
183.
To prevent forward contamination and maintain the scientific integrity of future life-detection missions, it is important to characterize and attempt to eliminate terrestrial microorganisms associated with exploratory spacecraft and landing vehicles. Among the organisms isolated from spacecraft-associated surfaces, spores of Bacillus pumilus SAFR-032 exhibited unusually high resistance to decontamination techniques such as UV radiation and peroxide treatment. Subsequently, B. pumilus SAFR-032 was flown to the International Space Station (ISS) and exposed to a variety of space conditions via the European Technology Exposure Facility (EuTEF). After 18 months of exposure in the EXPOSE facility of the European Space Agency (ESA) on EuTEF under dark space conditions, SAFR-032 spores showed 10-40% survivability, whereas a survival rate of 85-100% was observed when these spores were kept aboard the ISS under dark simulated martian atmospheric conditions. In contrast, when UV (>110?nm) was applied on SAFR-032 spores for the same time period and under the same conditions used in EXPOSE, a ~7-log reduction in viability was observed. A parallel experiment was conducted on Earth with identical samples under simulated space conditions. Spores exposed to ground simulations showed less of a reduction in viability when compared with the "real space" exposed spores (~3-log reduction in viability for "UV-Mars," and ~4-log reduction in viability for "UV-Space"). A comparative proteomics analysis indicated that proteins conferring resistant traits (superoxide dismutase) were present in higher concentration in space-exposed spores when compared to controls. Also, the first-generation cells and spores derived from space-exposed samples exhibited elevated UVC resistance when compared with their ground control counterparts. The data generated are important for calculating the probability and mechanisms of microbial survival in space conditions and assessing microbial contaminants as risks for forward contamination and in situ life detection.  相似文献   
184.
The Galileo Dust Detector is intended to provide direct observations of dust grains with masses between 10-19 and 10-9 kg in interplanetary space and in the Jovian system, to investigate their physical and dynamical properties as functions of the distances to the Sun, to Jupiter and to its satellites, to study its interaction with the Galilean satellites and the Jovian magnetosphere. Surface phenomena of the satellites (like albedo variations), which might be effects of meteoroid impacts will be compared with the dust environment. Electric charges of particulate matter in the magnetosphere and its consequences will be studied; e.g., the effects of the magnetic field on the trajectories of dust particles and fragmentation of particles due to electrostatic disruption. The investigation is performed with an instrument that measures the mass, speed, flight direction and electric charge of individual dust particles. It is a multicoincidence detector with a mass sensitivity 106 times higher than that of previous in-situ experiments which measured dust in the outer solar system. The instrument weighs 4.2 kg, consumes 2.4 W, and has a normal data transmission rate of 24 bits s-1 in nominal spacecraft tracking mode. On December 29, 1989 the instrument was switched-on. After the instrument had been configured to flight conditions cruise science data collection started immediately. In the period to May 18, 1990 at least 168 dust impacts have been recorded. For 81 of these dust grains masses and impact speeds have been determined. First flux values are given.  相似文献   
185.
    
With rich experience of the successful Indian remote sensing satellite series, Indian Space Research Organization (ISRO) has started theme-based satellites like Resourcesat and Oceansat. Further taking the advantage of the improved technologies in areas of miniaturization, the micro- and mini-satellite series have been started, which will provide opportunity for the payloads of stand-alone missions, for applications, study or research. These include payloads for Earth imaging, atmospheric monitoring, ocean monitoring, scientific applications, and stellar observation. The micro-satellites are of 100 kg class, planned with a payload of about 30 kg and 20 W power and mini-satellites of 450 kg class for payloads of 200 kg and power of 200 W. The first satellite in the micro-satellite series is an Earth imaging payload followed by the second satellite with scientific payloads with the participation of students. Further the scientific proposals for micro-satellites are under evaluation. Similarly the first two missions of mini-satellites are defined with first one carrying ocean and environment monitoring payloads followed by the Earth imaging satellite with multi-spectral camera with 700 km swath. The current paper touches upon the technology involved in realization of the micro- and mini-satellites and the scope of applications of the series.  相似文献   
186.
  总被引:6,自引:0,他引:6  
The paper summarizes the data on proliferation and gravity-related gene expression of osteoblasts that were obtained from an experiment conducted under simulated and real microgravity conditions. Simulated microgravity conditions obtained in a clinostat depress proliferation of both osteoblast-like MC3T3-E1 and HeLa carcinoma cells. This depression of proliferation occurs in a collagen gel culture in which the flow of culture medium by rotation may be reduced. Interestingly, MC3T3-E1 cells which are probably one of target cells to microgravity are more sensitive than the HeLa cells. Simulated microgravity inhibited the epidermal growth factor (EGF)-induced c-fos gene expression in the MC3T3-El cells. To examine in detail the effect of real microgravity on the EGF signal transduction cascade in osteoblasts, MC3T3-E1 cells were cultured in the Cell Culture Experiment Module of the sounding rocket TR-1A6. The EGF-induced c-fos expression in cells was depressed under short-term microgravity conditions in the sounding rocket, while the phosphorylation of mitogen-activated protein kinase (MAPK) was not affected compared with the controls grown on the ground. These results suggest that an action site of microgravity in the signal transduction pathway may be downstream of MAPK.  相似文献   
187.
Transient performance of a single-axis rate gyroscope mounted in a spacecraft which is spinning about the spin axis of the gyro is presented. Analytical expressions for various time-domain and frequency-domain specifications as functions of the spin rate of the vehicle are obtained. Numerical results are presented which are useful in selecting the gyro parameters if it is to be used for the measurements of the angular velocity in spinning space vehicles.  相似文献   
188.
    
An adaptive threshold detector to test for the presence of a weak signal in additive non-Gaussian noise of unknown level is discussed. The detector consists of a locally optimum detector, a noise level estimator, and a decision device. The detection threshold is made adaptive according to the information provided by the noise level estimator in order to keep a fixed false-alarm probability. Asymptotic performance characteristics are obtained indicating relationships among the basic system parameters such as the reference noise sample size and the underlying noise statistics. It is shown that, as the reference noise sample size is made sufficiently large, the adaptive threshold detector attains the performance of a corresponding locally optimum detector for detecting the weak signal were the noise level known.  相似文献   
189.
We have used the radio occultation (RO) satellite data CHAMP/GPS (Challenging Minisatellite Payload/Global Positioning System) for studying the ionosphere of the Earth. A method for deriving the parameters of ionospheric structures is based upon an analysis of the RO signal variations in the phase path and intensity. This method allows one to estimate the spatial displacement of a plasma layer with respect to the ray perigee, and to determine the layer inclination and height correction values. In this paper, we focus on the case study of inclined sporadic E (Es) layers in the high-latitude ionosphere based on available CHAMP RO data. Assuming that the internal gravity waves (IGWs) with the phase-fronts parallel to the ionization layer surfaces are responsible for the tilt angles of sporadic plasma layers, we have developed a new technique for determining the parameters of IGWs linked with the inclined Es structures. A small-scale internal wave may be modulating initially horizontal Es layer in height and causing a direction of the plasma density gradient to be rotated and aligned with that of the wave propagation vector k. The results of determination of the intrinsic wave frequency and period, vertical and horizontal wavelengths, intrinsic vertical and horizontal phase speeds, and other characteristics of IGWs under study are presented and discussed.  相似文献   
190.
    
The theory of shock acceleration of energetic particles is briefly discussed and reviewed with an emphasis on clarifying the apparent distinction between the V × B and Fermi mechanisms. Attention is restricted to those situations in which the energetic particles do not themselves influence the given shock structure. In particular, application of the theory to the acceleration of energetic particles in corotating interaction regions (CIR) in the solar wind is presented. Here particles are accelerated at the forward and reverse shocks which bound the CIR by being compressed between the shock fronts and magnetic irregularities upstream from the shocks, or by being compressed between upstream irregularities and those downstream from the shocks. Particles also suffer adiabatic deceleration in the expanding solar wind, an effect not included in previous shock models for acceleration in CIRs. The model is able to account for the observed exponential spectra at Earth, the observed behavior of the spectra with radial distance, the observed radial gradients in the intensity, and the observed differences in the intensity and spectra at the forward and reverse shocks.Calculations and resulting energy spectra are also presented for shock acceleration of energetic particles in large solar flare events. Based on the simplifying assumption that the shock evolves as a spherically symmetric Sedov blast wave, the calculation yields the time-integrated spectrum of particles initially injected at the shock which eventually escape ahead of the shock into interplanetary space. The spectra are similar to those observed at Earth. Finally further applications are suggested.An invited paper presented at STIP Workshop on Shock Waves in the Solar Corona and Interplanetary Space, 15–19 June, 1980, Smolenice, Czechoslovakia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号