首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8582篇
  免费   15篇
  国内免费   34篇
航空   3935篇
航天技术   3049篇
综合类   30篇
航天   1617篇
  2021年   80篇
  2019年   57篇
  2018年   171篇
  2017年   115篇
  2016年   116篇
  2015年   52篇
  2014年   205篇
  2013年   255篇
  2012年   239篇
  2011年   366篇
  2010年   263篇
  2009年   392篇
  2008年   451篇
  2007年   247篇
  2006年   191篇
  2005年   219篇
  2004年   222篇
  2003年   262篇
  2002年   182篇
  2001年   265篇
  2000年   161篇
  1999年   208篇
  1998年   240篇
  1997年   138篇
  1996年   214篇
  1995年   246篇
  1994年   247篇
  1993年   152篇
  1992年   187篇
  1991年   70篇
  1990年   72篇
  1989年   195篇
  1988年   83篇
  1987年   81篇
  1986年   84篇
  1985年   253篇
  1984年   189篇
  1983年   154篇
  1982年   159篇
  1981年   291篇
  1980年   79篇
  1979年   67篇
  1978年   66篇
  1977年   58篇
  1975年   76篇
  1974年   53篇
  1973年   49篇
  1972年   49篇
  1970年   55篇
  1969年   48篇
排序方式: 共有8631条查询结果,搜索用时 984 毫秒
511.
After more than two years of operation, the imaging γ-ray SIGMA telescope has accumulated several days of observation toward well known X-ray binaries. Four bright sources falling in this category have been detected so far: The pulsar GX 1+4 near the center of our galaxy, the stellar wind accreting system 4U 1700-377, and the black hole candidates Cygnus X-1 and GX 339-4. Moreover, SIGMA have observed three transients sources, which turned out to be also hard X-ray sources : The burster KS 1731-260, Tra X-1, and the Musca Nova. The properties of these systems in the SIGMA domain will be reviewed and a spectral distinction between black holes and neutron stars will be sketched.  相似文献   
512.
阐述了可变速发电机(ASG)对多机电力系统的稳定性提高有着明显的效果。为了利用电力系统模拟仿真器进行实时仿真,开发了基于个人计算机(PC)的可变速发电机模组。通过将Matlab/Simulink环境下建立的ASG三相瞬时值模型装到PC里的数字处理器(DSP)板上运行,来实现更为详细的实时仿真。通过DSP板上的AD/DA转换接口,对基于PC的ASG模组与电力系统模拟仿真器等实施了物理连接,进行了多机电力系统的实时仿真.所有的仿真结果均显示,引入可变速发电机后,多机电力系统的整体稳定性有了大幅度的提高.  相似文献   
513.
Ionospheric Effects of Geomagnetic Storms in Different Longitude Sectors   总被引:3,自引:0,他引:3  
This paper analyzes the state of the ionosphere during two geomagnetic storms of a different intensity evolving in different sectors of local time in different seasons. There were used the data from a network of ionospheric stations located in the opposite longitudinal sectors of 80°-150° E and 250°-310° E.This analysis has permitted us to conclude that the detected differences in the variations of the disturbances are likely to be determined by the local time difference of the geomagnetic storm development, its intensity and by the different illumination conditions of the ionosphere.   相似文献   
514.
In this work a study is performed on the correlation between fast forward interplanetary shock parameters at 1 Astronomical Unit and sudden impulse (SI) amplitudes in the H-component of the geomagnetic field, for periods of solar activity maximum (year 2000) and minimum (year 1995–1996). Solar wind temperature, density and speed, and total magnetic field, were taken to calculate the static pressures (thermal and magnetic) both in the upstream and downstream sides of the shocks. The variations of the solar wind parameters and pressures were then correlated with SI amplitudes. The solar wind speed variations presented good correlations with sudden impulses, with correlation coefficients larger than 0.70 both in solar maximum and solar minimum, whereas the solar wind density presented very low correlation. The parameter better correlated with SI was the square root dynamic pressure variation, showing a larger correlation during solar maximum (r = 0.82) than during solar minimum (r = 0.77). The correlations of SI with square root thermal and magnetic pressure were smaller than with the dynamic pressure, but they also present a good correlation, with r > 0.70 during both solar maximum and minimum. Multiple linear correlation analysis of SI in terms of the three pressure terms have shown that 78% and 85% of the variance in SI during solar maximum and minimum, respectively, are explained by the three pressure variations. Average sudden impulse amplitude was 25 nT during solar maximum and 21 nT during solar minimum, while average square root dynamic pressure variation is 1.20 and 0.86 nPa1/2 during solar maximum and minimum, respectively. Thus on average, fast forward interplanetary shocks are 33% stronger during solar maximum than during solar minimum, and the magnetospheric SI response has amplitude 20% higher during solar maximum than during solar minimum. A comparison with theoretical predictions (Tsyganenko’s model corrected by Earth’s induced currents) of the coefficient of sudden impulse change with solar wind dynamic pressure variation showed excellent agreement, with values around 17 nT/nPa1/2.  相似文献   
515.
Non-thermal components are key ingredients for understanding clusters of galaxies. In the hierarchical model of structure formation, shocks and large-scale turbulence are unavoidable in the cluster formation processes. Understanding the amplification and evolution of the magnetic field in galaxy clusters is necessary for modelling both the heat transport and the dissipative processes in the hot intra-cluster plasma. The acceleration, transport and interactions of non-thermal energetic particles are essential for modelling the observed emissions. Therefore, the inclusion of the non-thermal components will be mandatory for simulating accurately the global dynamical processes in clusters. In this review, we summarise the results obtained with the simulations of the formation of galaxy clusters which address the issues of shocks, magnetic field, cosmic ray particles and turbulence.  相似文献   
516.
Itapetinga measurements at 48 GHz with the multibeam technique are used to determine the relative position of solar burst centroid of emission with high spatial accuracy and time resolution. For the Great Bursts of October 19,22, 1989, with a large production of relativistic particles, and October 23, it is suggested that, at 48 GHz, the bursts might have originated in more then one source in space and time. Additionally the October 19 and 22 Ground Level Events exhibited very unusual intensity-time profiles including double component structures for the onset phase. The Bern observatory spectral radio emission data show a strong spectral flattening typical for large source inhomogeneties. The interpretation for this is that large solar flares are a superposition of a few strong bursts (separated both in space and time) in the same flaring region.  相似文献   
517.
Comet 19P/Borrelly was observed by Deep Space One spacecraft on September 22, 2001 (Soderblom et al., 2002).The DS1 images show a very dark and elongate nucleus with a complex topography; the IR spectra show a strong red-ward slope consistent with a very hot and dry surface (345K to 300K). During DS1 encounter the comet coma was dominated by a prominent jet but most of the comet was inactive, confirming the Earth-based observations that <10% of the surface is actively sublimating. We have developed a thermal evolution model of comet PBorrelly, using a numerical code that is able to solve the heat conduction and gas diffusion equations at the same time across an idealized spherical nucleus ( De Sanctis et al., 1999, 2000; Capria et al., 2000; Coradini et al., 1997a,b). The comet nucleus is composed by water, volatiles ices and dust in different proportions. The refractory component is made by grains that are embedded in the icy matrix. The code is able to account for the dust release, contributing to the dust flux, and the formation of dust mantles on the comet surface. The model was applied to a cometary nucleus with the estimated physical and dynamical characteristics of P/Borrelly in order to infer the status and activity level of a body on such an orbit during the DS1 observation. The comet gas flux, differentiation and thermal behavior were simulated and reproduced. The model results are in good agreement with the DS1 flyby results and the ground based observations, in terms of activity, dust coverage and temperatures of the surface.  相似文献   
518.
MUSES-C, a Japanese sample return mission, is targeting a small near Earth asteroid, 1998SF36, which is considered an S-type asteroid and is similar in spectroscopy to LL class ordinary chondrite meteorite ([Binzel et al., 2001]). Although this mission will bring us detailed photometric data, that is, disk-resolved bidirectional reflectance data of the asteroid, there were few bidirectional reflectance data of ordinary chondrite meteorites. For the purpose of comparison with the data obtained by the in-situ observation, we have performed measurements of bidirectional reflectance of ordinary chondrite samples.

Here we summarize the result of our laboratory measurements of the bidirectional reflectance and compare them with the scattering property of 1998SF36. Although the geometric albedo of 1998SF36 is higher than the typical value of S-type asteroids, however, the laboratory data of ordinary chondrite are similar to or brighter than the model disk-resolved reflectance of 1998SF36 derived from disk-integrated ground-based data. We found in our laboratory data that there is a positive correlation between the surface roughness and the strength of the opposition effect. A stronger opposition effect in the reflectance of 1998SF36 than the laboratory data may therefore indicate that the surface of the asteroid has rougher structure than our laboratory samples.  相似文献   

519.
In this paper we review the possible mechanisms for production of non-thermal electrons which are responsible for the observed non-thermal radiation in clusters of galaxies. Our primary focus is on non-thermal Bremsstrahlung and inverse Compton scattering, that produce hard X-ray emission. We first give a brief review of acceleration mechanisms and point out that in most astrophysical situations, and in particular for the intracluster medium, shocks, turbulence and plasma waves play a crucial role. We also outline how the effects of the turbulence can be accounted for. Using a generic model for turbulence and acceleration, we then consider two scenarios for production of non-thermal radiation. The first is motivated by the possibility that hard X-ray emission is due to non-thermal Bremsstrahlung by nonrelativistic particles and attempts to produce non-thermal tails by accelerating the electrons from the background plasma with an initial Maxwellian distribution. For acceleration rates smaller than the Coulomb energy loss rate, the effect of energising the plasma is to primarily heat the plasma with little sign of a distinct non-thermal tail. Such tails are discernible only for acceleration rates comparable or larger than the Coulomb loss rate. However, these tails are accompanied by significant heating and they are present for a short time of <106 years, which is also the time that the tail will be thermalised. A longer period of acceleration at such rates will result in a runaway situation with most particles being accelerated to very high energies. These more exact treatments confirm the difficulty with this model, first pointed out by Petrosian (Astrophys. J. 557:560, 2001). Such non-thermal tails, even if possible, can only explain the hard X-ray but not the radio emission which needs GeV or higher energy electrons. For these and for production of hard X-rays by the inverse Compton model, we need the second scenario where there is injection and subsequent acceleration of relativistic electrons. It is shown that a steady state situation, for example arising from secondary electrons produced from cosmic ray proton scattering by background protons, will most likely lead to flatter than required electron spectra or it requires a short escape time of the electrons from the cluster. An episodic injection of relativistic electrons, presumably from galaxies or AGN, and/or episodic generation of turbulence and shocks by mergers can result in an electron spectrum consistent with observations but for only a short period of less than one billion years.  相似文献   
520.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号