首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8334篇
  免费   18篇
  国内免费   23篇
航空   3718篇
航天技术   2852篇
综合类   31篇
航天   1774篇
  2021年   89篇
  2019年   50篇
  2018年   252篇
  2017年   165篇
  2016年   150篇
  2015年   62篇
  2014年   218篇
  2013年   273篇
  2012年   255篇
  2011年   384篇
  2010年   279篇
  2009年   409篇
  2008年   433篇
  2007年   276篇
  2006年   188篇
  2005年   233篇
  2004年   219篇
  2003年   258篇
  2002年   184篇
  2001年   272篇
  2000年   142篇
  1999年   181篇
  1998年   220篇
  1997年   136篇
  1996年   188篇
  1995年   243篇
  1994年   222篇
  1993年   129篇
  1992年   170篇
  1991年   54篇
  1990年   61篇
  1989年   159篇
  1988年   65篇
  1987年   66篇
  1986年   75篇
  1985年   221篇
  1984年   177篇
  1983年   135篇
  1982年   141篇
  1981年   247篇
  1980年   65篇
  1979年   55篇
  1978年   58篇
  1977年   51篇
  1975年   58篇
  1974年   46篇
  1973年   37篇
  1972年   46篇
  1971年   44篇
  1970年   42篇
排序方式: 共有8375条查询结果,搜索用时 15 毫秒
171.
Performance of efficient single-person cardiopulmonary resuscitation (CPR) is vital to maintain cardiac and cerebral perfusion during the 2–4 min it takes for deployment of advanced life support during a space mission. The aim of the present study was to investigate potential differences in upper body muscle activity during CPR performance at terrestrial gravity (+1Gz) and in simulated microgravity (μG). Muscle activity of the triceps brachii, erector spinae, rectus abdominis and pectoralis major was measured via superficial electromyography in 20 healthy male volunteers. Four sets of 30 external chest compressions (ECCs) were performed on a mannequin. Microgravity was simulated using a body suspension device and harness; the Evetts–Russomano (ER) method was adopted for CPR performance in simulated microgravity. Heart rate and perceived exertion via Borg scores were also measured. While a significantly lower depth of ECCs was observed in simulated microgravity, compared with +1Gz, it was still within the target range of 40–50 mm. There was a 7.7% decrease of the mean (±SEM) ECC depth from 48 ± 0.3 mm at +1Gz, to 44.3 ± 0.5 mm during microgravity simulation (p < 0.001). No significant difference in number or rate of compressions was found between the two conditions. Heart rate displayed a significantly larger increase during CPR in simulated microgravity than at +1Gz, the former presenting a mean (±SEM) of 23.6 ± 2.91 bpm and the latter, 76.6 ± 3.8 bpm (p < 0.001). Borg scores were 70% higher post-microgravity compressions (17 ± 1) than post +1Gz compressions (10 ± 1) (p < 0.001). Intermuscular comparisons showed the triceps brachii to have significantly lower muscle activity than each of the other three tested muscles, in both +1Gz and microgravity. As shown by greater Borg scores and heart rate increases, CPR performance in simulated microgravity is more fatiguing than at +1Gz. Nevertheless, no significant difference in muscle activity between conditions was found, a result that is favourable for astronauts, given the inevitable muscular and cardiovascular deconditioning that occurs during space travel.  相似文献   
172.
Time-dependent thermal X-ray spectra are calculated from physically plausible conditions around GRB. It is shown that account for time-dependent ionization processes strongly affects the observed spectra of hot rarefied plasma. These calculations may provide an alternative explanation to the observed X-ray lines of early GRBs afterglows (such as GRB 011211). Our technique will allow one to obtain independent constraints on the GRB collimation angle and on the clumpiness of circumstellar matter.  相似文献   
173.
Methods used to project risks in low-Earth orbit are of questionable merit for exploration missions because of the limited radiobiology data and knowledge of galactic cosmic ray (GCR) heavy ions, which causes estimates of the risk of late effects to be highly uncertain. Risk projections involve a product of many biological and physical factors, each of which has a differential range of uncertainty due to lack of data and knowledge. Using the linear-additivity model for radiation risks, we use Monte-Carlo sampling from subjective uncertainty distributions in each factor to obtain an estimate of the overall uncertainty in risk projections. The resulting methodology is applied to several human space exploration mission scenarios including a deep space outpost and Mars missions of duration of 360, 660, and 1000 days. The major results are the quantification of the uncertainties in current risk estimates, the identification of factors that dominate risk projection uncertainties, and the development of a method to quantify candidate approaches to reduce uncertainties or mitigate risks. The large uncertainties in GCR risk projections lead to probability distributions of risk that mask any potential risk reduction using the "optimization" of shielding materials or configurations. In contrast, the design of shielding optimization approaches for solar particle events and trapped protons can be made at this time and promising technologies can be shown to have merit using our approach. The methods used also make it possible to express risk management objectives in terms of quantitative metrics, e.g., the number of days in space without exceeding a given risk level within well-defined confidence limits.  相似文献   
174.
Seasonal-to-interannual variability of the winter-spring bloom in the Gulf of Cádiz, eastern North Atlantic, has been investigated using chlorophyll-a remote sensing (CHL). These data have been obtained from the GlobColour project; the temporal coverage extends from September 1997 to December 2010. In this study we develop a generic quantitative approach for describing the temporal variability in the shape of the winter-spring bloom within a region. Variability in both the timing and magnitude of the bloom in the basin has been evaluated as a function of physical properties in the water column such as Mixed Layer Depth (MLD, GODAS model), sea surface temperature (SST, from AVHRR radiometers), photosynthetically-active radiation (PAR, from ocean color data) and euphotic depth (Zeu, from ocean color data). The analysis indicated that the timing, size and duration of the phytoplankton bloom in this area are largely controlled by both meteorological and oceanographic conditions at different scales; this means that it is likely to vary widely from one year to another.  相似文献   
175.
Small changes in semimajor axis of the orbits selected for the GNSS-R [R as Reflectometry] satellites, so-called fine orbit tuning, known from the ESA’s Gravity and steady-state Ocean Circulation Explorer mission, can dramatically increase the number of nadir and off-nadir reflecting points and, in turn, can enhance the capability of the concept of bistatic altimetry (GNSS Reflectometry) without additional costs. The application of our suggestion is feasible for a satellite which will be equipped by thrusters for the orbit keeping. During the mission lifetime several orbit tunings are feasible, just to transfer from one to another orbit. Then we can study short-periodic or longer-periodic features, according to scientific goals defined for the mission. The shortest cycles (few days), corresponding to the required revisit time (defined by ESA), may be subcycles of much longer cycles (repeat periods).  相似文献   
176.
Intense fires were produced on the Paraná river delta islands, Argentina, during most part of 2008, by a combination of an exceptionally dry period and the farmers’ use of a fire land-cleaning technique. In April 2008, those fires significantly affected the nearby regions and their inhabitants, from Rosario city to Buenos Aires mega-city. In this work we present satellite as well as ground Aerosol Optical Depth (AOD) at 550 nm data obtained during the propagation of pollution clouds to the central zone of Argentina. The highest value (1.18) was registered at Buenos Aires by atmospheric remote sensing, using the satellite instrument MODIS/Terra on April 18th 2008 at 10:35 local time (= UT − 3 h). On the same day, ground air quality detectors also measured in this city the highest Total Suspended Particle (TSP) value of the month, 2.02 mg/m3. The AOD(550) daily variation at Rosario Astronomical Observatory, which is located near the Paraná riverside, was derived by combining solar ultraviolet erythemal irradiance data (measured with a YES biometre) with model calculations. On April 25th 2008, from 12:00 to 15:30 local time, a rather high and constant AOD(550) value was registered, with a mean value of (0.90 ± 0.21). Cities located on the side of the Rosario–Buenos Aires highway (San Nicolás, Baradero and San Pedro) were also affected, showing a mean AOD(550) between the Rosario and Buenos Aires values. The particulate matter was collected with gridded samplers placed on the Paraná river islands as well as at the Rosario Observatory. They were analysed with a Scanning Electron Microscope (SEM) and mainly showed a biological origin. Even if normally large particles travel small distances from the source, organic aerosol in the range of 40–100 μm and complex asymmetric structures were registered several kilometres away from the aerosol sources on the islands. Another event of intense UV index attenuation (98.6%) occurred on September 18th 2008, due to very dense smoke clouds that extended over the Rosario area for several hours. The clouds were driven away from the fires by East–northeast and East–southeast winds. The minimum value of this index measured around noon allows to derive a maximum AOD(550)max = (3.65 ± 0.90) at 12:45 local time. Soot clouds extended over the Paraná river, transporting Burned Biomass Debris (BBD) that deposited on Rosario. In particular, burned leaves and small branches with dimensions of 1–20 cm were collected. The mean (BBD) particles deposited on the ground from 7:00 to 19:00 local time were (0.92 ± 0.20) BBD/(m2 h).  相似文献   
177.
This study proposes a motion detection and object tracking technique for GEO debris in a sequence of images. A couple of techniques (called the “stacking method” and “line-identifying technique”) were recently proposed to address the same problem. Although these techniques are effective at detecting the debris position and motion in the image sequences, there are some issues concerned with computational load and assumed debris motion. This study derives a method to estimate motion vectors of objects in image sequence and finally detect the debris locations by using a computer vision technique called an optical flow algorithm. The new method detects these parameters in low computational time in a serial manner, which implies that it has an advantage to track not only linear but also nonlinear motion of GEO debris more easily than the previous methods. The feasibility of the proposed methods is validated using real and synthesized image sequences which contain some typical debris motions.  相似文献   
178.
Collisionless unmagnetized plasma consisting of a mixture of warm ion-fluid and isothermal-electron is considered, assuming that the ion flow velocity has a weak relativistic effect. The reductive perturbation method has been employed to derive the Korteweg–de Vries (KdV) equation for small – but finite-amplitude electrostatic ion-acoustic waves in this plasma. The semi-inverse method and Agrawal’s method lead to the Euler–Lagrange equation that leads to the time fractional KdV equation. The variational-iteration method given by He is used to solve the derived time fractional KdV equation. The calculations show that the fractional order may play the same rule of higher order dissipation in KdV equation to modulate the soliton wave amplitude in the plasma system. The results of the present investigation may be applicable to some plasma environments, such as space-plasmas, laser-plasma interaction, plasma sheet boundary layer of the earth’s magnetosphere, solar atmosphere and interplanetary space.  相似文献   
179.
Simultaneous observations of in situ plasma properties in the tail of the Earth’s magnetosphere and of ground based instruments, lying on the same geomagnetic field lines, have recently proved to yield significant new results. In most cases magnetosphere ionosphere interactions during the night-time northern hemisphere conditions are studied. Here, observations of energetic electrons in the tail of the Earth’s magnetosphere made by the THEMIS mission satellites are compared with auroral radio wave absorption determined by riometers in the Antarctic for sunlit conditions. Days for which satellites and riometers are connected by the same geomagnetic field line are selected using a geomagnetic field model. The six days analysed show clear associations between fluxes and absorptions in some cases. However, these do not necessarily correspond to conjugacy intervals. Hours of positive associations are 1.65 times those for negative associations, all hours and days considered (1.42–3.6 on five days and 0.58 on the other day). These computations are assumed appropriate since the footprints of the satellites used approximately follow corrected geomagnetic parallels for all six days studied. The use of a finer parameterization of geomagnetic models to determine conjugacy may be needed.  相似文献   
180.
This paper outlines, and explores the uncertainties in, hypothesized connections between a series of processes that could explain two long-standing puzzles; those of (1) the observed winter storm vorticity responses to atmospheric energy inputs that change the ionosphere–earth current density, Jz, that appear to involve storm invigoration, and (2) changes in anti-cyclonic blocking and circulation that include the observed colder winters in Great Britain and western Europe at solar minima, and especially at extended solar minima. A working hypothesis for the mechanism responsible for (1) is that the flow of Jz through conductivity gradients, as in stratified cloud layers and fog, especially with sea-salt aerosol haze over the high latitude winter oceans, deposits electric changes on droplets and aerosol particles; most importantly on cloud condensation nuclei (CCN). These electric charges modulate scavenging of the particles in clouds and haze layers, increasing the concentration of small CCN and decreasing the concentration of large CCN. When further cloud formation occurs there is increased concentration of small droplets and decreased concentration of large ones, reducing coalescence and the production of rain. Thus updrafts carry more liquid water above the freezing level, and there the increased production of ice releases more latent heat and invigorates the updraft (the Rosenfeld mechanism), leading to increased vorticity. Here we explore the major uncertainties for the reality of the above chain of physical processes. A consequence of cumulative cyclonic vorticity increases is increases in downstream anti-cyclonic blocking. A further working hypothesis for (2) is that the invigoration may be large enough to contribute to the observed increases in blocking in winters at solar minima (high Jz) in the North Atlantic, that result in colder winters in the UK and northern Europe.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号