全文获取类型
收费全文 | 265篇 |
免费 | 36篇 |
国内免费 | 25篇 |
专业分类
航空 | 182篇 |
航天技术 | 53篇 |
综合类 | 24篇 |
航天 | 67篇 |
出版年
2024年 | 3篇 |
2023年 | 6篇 |
2022年 | 12篇 |
2021年 | 8篇 |
2020年 | 9篇 |
2019年 | 11篇 |
2018年 | 5篇 |
2017年 | 13篇 |
2016年 | 10篇 |
2015年 | 6篇 |
2014年 | 13篇 |
2013年 | 4篇 |
2012年 | 12篇 |
2011年 | 13篇 |
2010年 | 12篇 |
2009年 | 12篇 |
2008年 | 14篇 |
2007年 | 21篇 |
2006年 | 16篇 |
2005年 | 12篇 |
2004年 | 14篇 |
2003年 | 8篇 |
2002年 | 4篇 |
2001年 | 3篇 |
2000年 | 4篇 |
1999年 | 4篇 |
1998年 | 6篇 |
1997年 | 5篇 |
1996年 | 13篇 |
1995年 | 6篇 |
1994年 | 4篇 |
1993年 | 4篇 |
1992年 | 4篇 |
1991年 | 5篇 |
1990年 | 7篇 |
1989年 | 7篇 |
1987年 | 1篇 |
1985年 | 4篇 |
1984年 | 4篇 |
1983年 | 3篇 |
1982年 | 4篇 |
排序方式: 共有326条查询结果,搜索用时 8 毫秒
191.
光栅地震检波器的研究 总被引:8,自引:1,他引:7
阐述了一种新型地震检波器———光栅地震检波器的工作原理和理论计算,从理论上给出了该地震检波器的响应函数、分辨率等重要参数。 相似文献
192.
193.
提出根据载客量、航程、巡航速度和高度即可初步确定斜置飞翼超声速旅客机气动外形参数的方法.讨论了对称面弦长的选取范围,确定了展弦比、起飞翼载荷与展长的关系,提出了展弦比、起飞翼载荷的选取原则,并推导了油箱展向长度和客舱展向长度迭代公式.为了研究技术要求对斜置飞翼超声速旅客机气动外形参数的影响,对载客量250~550、航程6500~10000 km、升阻比11~12内若干设计点进行了研究分析.结果表明,所设计的飞翼存在一起飞重量阈值,当起飞重量小于该阈值时机翼面积由展弦比下限确定,当起飞重量大于此阈值时机翼面积由起飞翼载荷上限确定;提高巡航升阻比可减小由起飞翼载荷上限确定的机翼面积. 相似文献
194.
195.
197.
198.
为研究飞行器单独栅格舵全尺寸模型气动特性,考核、验证舵控系统操纵性能,在FL-24风洞(1.2m×1.2m)开展了专项试验技术研究.首次在国内高速风洞建立了全尺寸栅格舵高速风洞试验平台,主要内容包括:风洞大载荷侧壁支撑装置设计、高速风洞模型保护装置设计、高灵敏度气动测试天平研制、模型风载条件下变形测试系统设计以及动态气动力测量与数据处理方法等.该项试验技术实现了模型气动与舵控系统以及气动与结构一体化试验验证,为栅格舵尾翼布局飞行器相关专业设计及飞行试验提供了重要试验数据. 相似文献
199.
机器人空间组装是建造超大型航天器的重要方式。当前针对空间组装的研究大多集中于小型结构,没有考虑万有引力梯度和姿-轨-柔耦合效应的影响。本文针对主结构-空间机器人-待组装结构组成的系统,建立姿-轨-柔耦合动力学模型,研究万有引力梯度和姿-轨-柔耦合效应对组装过程的影响。首先,将空间机器人看作刚体,将主结构和待组装结构看作柔性体,分别采用自然坐标法和绝对节点坐标法进行运动学描述;然后,考虑刚体和柔性体的动能、万有引力势能和弹性势能推导系统的Hamilton方程,计入万有引力和万有引力梯度的影响;最后,通过轨迹规划和轨迹跟踪控制实现空间机器人空间组装超大型结构的姿-轨-柔耦合动力学仿真,给出组装过程中系统的轨道运动、姿态运动、空间机器人关节空间和笛卡尔空间、结构振动等动力学响应。研究发现:万有引力梯度和姿-轨-柔耦合效应对空间机器人的控制力矩和组装精度产生显著影响,在组装方案设计和控制系统设计中必须予以考虑。 相似文献
200.
在全局摩阻测量中,薄油膜技术可以很好地表征表面摩阻的分布情况。用特定波长的紫外线照射添加了荧光显色分子的不同厚度的油膜,油膜将发出不同的亮度。利用该原理通过检测受激发的荧光油膜灰度值可解算出相应油膜的厚度。本次采用BP神经网络及极限学习机(Extreme learning machine,ELM)神经网络搭建模型完成了荧光油膜厚度与灰度关系的预测,运用Hopfield神经网络完成了相应参数的辨识。实验表明,ELM神经网络模型、BP神经网络模型及插值法模型的预测误差分别为5.150%、5.485%和5.935%。通过Hopfield神经网络辨识,光源功率、光距和曝光系数等影响因素的参数误差率控制在1%左右,达到实际工程运用的要求。与传统插值法相比,通过神经网络可获得更高的精度,为荧光油膜灰度与厚度研究提供了一种可行的方法。 相似文献