首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   10篇
  国内免费   3篇
航空   82篇
航天技术   7篇
综合类   4篇
航天   15篇
  2023年   2篇
  2022年   4篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   8篇
  2015年   5篇
  2014年   1篇
  2012年   1篇
  2011年   13篇
  2010年   8篇
  2009年   17篇
  2008年   9篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   7篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
排序方式: 共有108条查询结果,搜索用时 15 毫秒
21.
阐述了空战训练的3种基本方法,分析了模拟初练的重要性及训练器模拟的发展现状,探讨了空战训练器的研制、使用等方面存在的问题。  相似文献   
22.
大飞机的研制质量和周期很大程度上依赖于工艺装备(工装)的设计制造质量和周期.通过集成工装设计、制造、管理技术,构建飞机工装数字化生产线,实现工装研发过程各环节数据流的畅通,才能充分发挥数字化技术在工装研发过程中的作用.中航飞机西安飞机分公司的大飞机工装数字化生产线的应用实践表明,在数字化环境下,机床的加工效率显著提高,工装返工数量大幅下降.  相似文献   
23.
柔性模具技术能够降低新产品模具开发成本和风险,缩短研制周期,其基本思想是采用可变形的结构或材料,代替传统的刚性  相似文献   
24.
介绍了控制仪的组成、工作原理及其在中小型磨床上的应用。  相似文献   
25.
基于有限元分析方法,研究了Lamb波在含有裂纹复合材料板中的传播问题。深入地分析了不同长度和深度的裂纹对Lamb传播的影响。在数值计算中,考虑了网格尺寸和时间积分步长选择。数值结果的正确性可以通过波到达时间和剪切波到达时间的一致性得到验证。分析结果表明,Lamb波在复合材料损伤监测中具有潜在的应用价值。  相似文献   
26.
利用有限元法,结合瞬态传热过程研究了火焰筒掺混孔内孔边裂纹形成和扩展机理,应用应变疲劳理论和裂纹扩展分析方法对裂纹萌生时间和扩展能力进行分析。由于火焰筒在热循环载荷作用下各处升温速度不一致.引起结构上的相互约束,使掺混孔边产生循环塑性变形导致疲劳裂纹萌生;裂纹萌生后会继续扩展,但这种扩展能力有限;孔边冷却区域大小会对裂纹扩展能力产生较大影响。  相似文献   
27.
固化变形是影响复合材料零件结构成型几何精度的重要因素。产生固化变形的原因一般可以分为内因和外因:内因主要与材料属性和结构设计参数有关;外因主要与固化工艺和模具有关。固化时这些因素共同作用,在复合材料结构内部产生残余应力,脱模时导致构件发生变形。通过对已有试验结果的研究,总结了不同因素对复合材料结构固化变形的影响,为固化变形的工程预测和控制提供直观的数据参考。  相似文献   
28.
结构疲劳可靠性分析方法及工程应用研究   总被引:1,自引:0,他引:1  
介绍了结构疲劳可靠性分析方法及工程应用研究情况,对选定的6个考题分别用应力严重系数法和DFR法进行了疲劳寿命估算和可靠性分析。寿命计算结果与文献2中的计算结果和试验结果吻合较好。结合以往大量实际飞机结构的应用考核验证,充分证明这种疲劳可靠性寿命估算方法计算结果可信,适合工程应用。  相似文献   
29.
随着航空航天工业、兵器工业、化学工业、电子工业等行业的发展,对产品零部件材料的性能有了更高要求,同时也出现了各种高强度、高硬度、高脆性的工程材料.材料性能提高的同时给加工带来了困难.例如高温合金在高温下具有优良的热强度性能、热稳定性能及热疲劳性能,常温下加工刀具磨损严重、表面质量差.工程陶瓷强度高、耐磨损、抗腐蚀,目前通常采用磨削加工,生产效率低、成本高、加工几何形状受限.  相似文献   
30.
模具设计技术的发展方向主要是提高数字化应用水平,并积极采用高新技术,逐步实现CAD/CAE/CAM信息网络技术一体化。模具无纸化设计制造过程将逐渐替代传统的设计和加工,而对模具制造、  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号