Abstract We examined a low-energy mechanism for the transfer of meteoroids between two planetary systems embedded in a star cluster using quasi-parabolic orbits of minimal energy. Using Monte Carlo simulations, we found that the exchange of meteoroids could have been significantly more efficient than previously estimated. Our study is relevant to astrobiology, as it addresses whether life on Earth could have been transferred to other planetary systems in the Solar System's birth cluster and whether life on Earth could have been transferred from beyond the Solar System. In the Solar System, the timescale over which solid material was delivered to the region from where it could be transferred via this mechanism likely extended to several hundred million years (as indicated by the 3.8-4.0?Ga epoch of the Late Heavy Bombardment). This timescale could have overlapped with the lifetime of the Solar birth cluster (~100-500?Myr). Therefore, we conclude that lithopanspermia is an open possibility if life had an early start. Adopting parameters from the minimum mass solar nebula, considering a range of planetesimal size distributions derived from observations of asteroids and Kuiper Belt objects and theoretical coagulation models, and taking into account Oort Cloud formation models, we discerned that the expected number of bodies with mass>10?kg that could have been transferred between the Sun and its nearest cluster neighbor could be of the order of 10(14) to 3·10(16), with transfer timescales of tens of millions of years. We estimate that of the order of 3·10(8)·l (km) could potentially be life-bearing, where l is the depth of Earth's crust in kilometers that was ejected as the result of the early bombardment. Key Words: Extrasolar planets-Interplanetary dust-Interstellar meteorites-Lithopanspermia. Astrobiology 12, 754-774. 相似文献
Cryptoendolithic microbial communities and epilithic lichens have been considered as appropriate candidates for the scenario of lithopanspermia, which proposes a natural interplanetary exchange of organisms by means of rocks that have been impact ejected from their planet of origin. So far, the hardiness of these terrestrial organisms in the severe and hostile conditions of space has not been tested over extended periods of time. A first long-term (1.5 years) exposure experiment in space was performed with a variety of rock-colonizing eukaryotic organisms at the International Space Station on board the European EXPOSE-E facility. Organisms were selected that are especially adapted to cope with the environmental extremes of their natural habitats. It was found that some-but not all-of those most robust microbial communities from extremely hostile regions on Earth are also partially resistant to the even more hostile environment of outer space, including high vacuum, temperature fluctuation, the full spectrum of extraterrestrial solar electromagnetic radiation, and cosmic ionizing radiation. Although the reported experimental period of 1.5 years in space is not comparable with the time spans of thousands or millions of years believed to be required for lithopanspermia, our data provide first evidence of the differential hardiness of cryptoendolithic communities in space. 相似文献
Issues about commercialization of space have been a growing concern in the past decade for the space community. This paper focuses on the work from a team of 51 students attending the Summer Session Program of the International Space University in Bremen, Germany. CASH 2021 (Commercial Access and Space Habitation) documents a plan that identifies commercial opportunities for space utilization that will extend human presence in space, and will chart the way forward for the next 20 years. The group selected four commercial sectors that show the most promise for the future: tourism, entertainment, space system service, assembly and debris removal, and research and development/production. The content of this document presents the results of their research. Historical activities in each of the commercial sectors are reviewed along with the current market situation. To provide a coherent background for future commercialization possibilities a scenario has been developed. This scenario includes a postulated upon ideal future and includes social, political and economic factors that may affect the space industry over the timeline of the study. The study also presents a roadmap, within the limited optimistic scenario developed, for the successful commercialization of space leading to future human presence in space. A broad range of commercially viable opportunities, not only within the current limits of the International Space Station, but also among the many new developments that are expected by 2021 are discussed. 相似文献
Since 1988 high sensitivity semiconductor dosimeter-radiometer “Liulin” worked on board of MIR space station. Device measured the absorbed dose rate and the flux of penetrating particles. The analysis of the data hows the following new results:
In October 1989 and after March 24, 1991, two additional stable maximums in flux channel were observed in the southern-eastern part of South Atlantic Anomaly (SAA). These two maximums existed at least several months and seem to be due to trapped high energy electron and proton fluxes. In April 1991 additional maximums were localized in the following geographical coordinates regions: LATITUDE = (−35 °)–(−50 °) LONGITUDE = 332 ° − 16 ° and lat.(−46 °)–(−52 °) long. 360 ° − 60 °. Additional maximums diffusion occurs inside radiation belt. Appearance of these maximums seems to be closely connected with preceding powerful solar proton events and associated geomagnetic dynamics of new belt disturbances. After the series of solar proton events in June 1991 we observed significant enhancement of this new radiation belt formation. To achieve sufficient accuracy of dose rate predictions in low Earth orbits the structure and dynamics of new belt should be carefully analyzed to be included in a new environment model.
From the inter comparison of the data from “Liulin” and French developed tissue equivalent LET spectrometer NAUSICAA in the time period August–November 1992 we come to the following conclusions: Mainly there is good agreement between both data sets for absorbed dose in the region of SAA; Different situation of the instruments on the station can explain the cases when differences up to 2 times are observed; At high latitudes usually the tissue equivalent absorbed dose observations are 2 times larger than “Liulin” doses. 相似文献