全文获取类型
收费全文 | 1519篇 |
免费 | 251篇 |
国内免费 | 137篇 |
专业分类
航空 | 1185篇 |
航天技术 | 155篇 |
综合类 | 179篇 |
航天 | 388篇 |
出版年
2024年 | 10篇 |
2023年 | 66篇 |
2022年 | 52篇 |
2021年 | 74篇 |
2020年 | 65篇 |
2019年 | 80篇 |
2018年 | 72篇 |
2017年 | 57篇 |
2016年 | 55篇 |
2015年 | 57篇 |
2014年 | 76篇 |
2013年 | 63篇 |
2012年 | 68篇 |
2011年 | 86篇 |
2010年 | 80篇 |
2009年 | 78篇 |
2008年 | 63篇 |
2007年 | 60篇 |
2006年 | 64篇 |
2005年 | 72篇 |
2004年 | 61篇 |
2003年 | 56篇 |
2002年 | 54篇 |
2001年 | 34篇 |
2000年 | 40篇 |
1999年 | 37篇 |
1998年 | 36篇 |
1997年 | 30篇 |
1996年 | 35篇 |
1995年 | 21篇 |
1994年 | 26篇 |
1993年 | 25篇 |
1992年 | 20篇 |
1991年 | 17篇 |
1990年 | 21篇 |
1989年 | 21篇 |
1988年 | 8篇 |
1987年 | 14篇 |
1986年 | 4篇 |
1985年 | 9篇 |
1984年 | 3篇 |
1983年 | 5篇 |
1982年 | 7篇 |
1981年 | 7篇 |
1980年 | 7篇 |
1979年 | 5篇 |
1977年 | 5篇 |
1957年 | 1篇 |
排序方式: 共有1907条查询结果,搜索用时 46 毫秒
151.
152.
数字签名是保障网络信息安全的手段之一,可以解决伪造、抵赖、冒充和篡改问题。本文详述了RSA算法的基本原理和数字签名体制的构成,实现了基于RSA的数字签名系统,该系统包括RSA密钥的生成、数字签名的生成和数字签名的验证。为了加快数字签名的速度,发送方先用哈希算法对要签名的文件计算出一个固定长度的消息摘要,然后用RSA算法对消息摘要进行加密生成数字签名,将文件和数字签名一起发给接收方,接收方利用发送方的公钥对数字签名进行解密生成消息摘要1,然后用同样的哈希算法对接收的文件生成消息摘要2,比较这两个消息摘要,如果相同,说明文件没有被篡改。与其他数字签名体制相比,基于RSA的数字签名具有较高的安全性和可靠性。 相似文献
153.
用ZrB2微粉对2D C/SiC基体进行改性,研究了化学气相渗透结合浆料浸渍及先驱体浸渍裂解工艺制备2DC/SiC-ZrB2复合材料在氧-乙炔焰和1800℃甲烷风洞环境中的烧蚀行为.结果表明:在氧-乙炔环境中,2D C/SiC-ZrB2的线烧蚀率和质量烧蚀率分别为6.1×10-2 mm/s和1.0×10 -2g/s,相对2D C/SiC复合材料而言,ZrB2微粉并没有提高C/SiC复合材料的抗烧蚀性能.在1800℃甲烷风洞环境中,涂层致密度起主要作用,涂层致密度相同时,复合材料的开气孔率越大,质量烧蚀率越大,ZrB2微粉的渗入对C/SiC复合材料的烧蚀性能影响不大. 相似文献
154.
155.
156.
157.
为对比探究未来大推力航空混合动力系统与传统航空发动机的优劣,本文依托某概念型齿轮传动涡扇(Geared turbofan,GTF)发动机,设计了一个并联航空油-电混合动力系统(hybrid GTF,hGTF),在Matlab /Simulink数字仿真软件中建立相匹配的电动力模型以及氮氧化物NOx排放和噪声预测等性能参数计算模型,并在稳态和飞行任务剖面下初步分析了电动力系统的引入对原基线GTF发动机的性能改变状况。稳态仿真结果表明,大推力等级的并联油-电混合动力系统中,至少需要兆瓦级的电动力系统进行匹配;当电动力系统处于电动模式时,可能会带来低压压气机喘振的隐患;当电动力系统处于再生模式时,电能源相当于经过了电能到机械能再到电能的二次效率损失,不建议采用。飞行任务剖面动态仿真结果表明,相比于传统GTF发动机,hGTF推进系统的燃油消耗率最高下降15%,总燃油消耗节省8.3%, NOx总排放量减少18.8%,各部件起飞噪声总声压级减少1.5~3.3dB。分析结果表明采用并联混合动力系统具有显著提升省油、减排效果的能力,同时也具有一定的降噪潜力。 相似文献
158.
159.
空气辅助喷射闪急沸腾喷雾特性试验 总被引:1,自引:2,他引:1
在定容弹内利用高速相机和相位多普勒粒子分析仪(PDPA)研究了环境压力和燃油温度对空气辅助喷射系统喷雾特性的影响。试验环境压力的变化范围为0.01MPa到0.1MPa,燃油温度的变化范围为25℃到100℃。试验结果表明:随着环境压力的减小,燃油喷雾逐渐从冷态过渡到闪急沸腾状态,在喷嘴出口处喷雾气泡急剧增加。当环境压力小于0.02MPa时,喷雾处于闪急沸腾状态,液滴速度增加,粒径减小,在喷雾近端出现喷雾膨胀现象;随着燃油温度的上升,液滴表面张力减小,液滴易于破碎。当燃油温度达到100℃时,喷雾处于闪急沸腾状态,喷雾远端出现喷雾膨胀现象。 相似文献
160.