首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   398篇
  免费   6篇
  国内免费   3篇
航空   293篇
航天技术   61篇
综合类   7篇
航天   46篇
  2022年   4篇
  2021年   5篇
  2020年   2篇
  2019年   6篇
  2018年   71篇
  2017年   39篇
  2016年   4篇
  2015年   5篇
  2014年   1篇
  2013年   15篇
  2012年   7篇
  2011年   25篇
  2010年   15篇
  2009年   13篇
  2008年   11篇
  2007年   20篇
  2006年   10篇
  2005年   17篇
  2004年   8篇
  2003年   1篇
  2002年   1篇
  2001年   11篇
  2000年   11篇
  1999年   7篇
  1998年   5篇
  1997年   4篇
  1996年   3篇
  1995年   8篇
  1994年   3篇
  1993年   4篇
  1992年   9篇
  1991年   1篇
  1989年   2篇
  1985年   15篇
  1984年   10篇
  1983年   1篇
  1982年   4篇
  1981年   19篇
  1980年   1篇
  1977年   1篇
  1975年   2篇
  1973年   2篇
  1972年   1篇
  1969年   2篇
  1963年   1篇
排序方式: 共有407条查询结果,搜索用时 109 毫秒
351.
This paper summarizes the results obtained by the team “Heliosheath Processes and the Structure of the Heliopause: Modeling Energetic Particles, Cosmic Rays, and Magnetic Fields” supported by the International Space Science Institute (ISSI) in Bern, Switzerland. We focus on the physical processes occurring in the outer heliosphere, especially at its boundary called the heliopause, and in the local interstellar medium. The importance of magnetic field, charge exchange between neutral atoms and ions, and solar cycle on the heliopause topology and observed heliocentric distances to different heliospheric discontinuities are discussed. It is shown that time-dependent, data-driven boundary conditions are necessary to describe the heliospheric asymmetries detected by the Voyager spacecraft. We also discuss the structure of the heliopause, especially due to its instability and magnetic reconnection. It is demonstrated that the Rayleigh–Taylor instability of the nose of the heliopause creates consecutive layers of the interstellar and heliospheric plasma which are magnetically connected to different sources. This may be a possible explanation of abrupt changes in the galactic and anomalous cosmic ray fluxes observed by Voyager 1 when it was crossing the heliopause structure for a period of about one month in the summer of 2012. This paper also discusses the plausibility of fitting simulation results to a number of observational data sets obtained by in situ and remote measurements. The distribution of magnetic field in the vicinity of the heliopause is discussed in the context of Voyager measurements. It is argued that a classical heliospheric current sheet formed due to the Sun’s rotation is not observed by in situ measurements and should not be expected to exist in numerical simulations extending to the boundary of the heliosphere. Furthermore, we discuss the transport of energetic particles in the inner and outer heliosheath, concentrating on the anisotropic spatial diffusion diffusion tensor and the pitch-angle dependence of perpendicular diffusion and demonstrate that the latter can explain the observed pitch-angle anisotropies of both the anomalous and galactic cosmic rays in the outer heliosheath.  相似文献   
352.
We present the design, implementation, and on-ground performance measurements of the Ionospheric Connection Explorer EUV spectrometer, ICON EUV, a wide field (\(17^{\circ}\times 12^{\circ}\)) extreme ultraviolet (EUV) imaging spectrograph designed to observe the lower ionosphere at tangent altitudes between 100 and 500 km. The primary targets of the spectrometer, which has a spectral range of 54–88 nm, are the Oii emission lines at 61.6 nm and 83.4 nm. Its design, using a single optical element, permits a 0 . ° 26 Open image in new window imaging resolution perpendicular to the spectral dispersion direction with a large (\(12^{\circ} \)) acceptance parallel to the dispersion direction while providing a slit-width dominated spectral resolution of \(R\sim25\) at 58.4 nm. Pre-flight calibration shows that the instrument has met all of the science performance requirements.  相似文献   
353.
The Juno Gravity Science Instrument   总被引:1,自引:0,他引:1  
The Juno mission’s primary science objectives include the investigation of Jupiter interior structure via the determination of its gravitational field. Juno will provide more accurate determination of Jupiter’s gravity harmonics that will provide new constraints on interior structure models. Juno will also measure the gravitational response from tides raised on Jupiter by Galilean satellites. This is accomplished by utilizing Gravity Science instrumentation to support measurements of the Doppler shift of the Juno radio signal by NASA’s Deep Space Network at two radio frequencies. The Doppler data measure the changes in the spacecraft velocity in the direction to Earth caused by the Jupiter gravity field. Doppler measurements at X-band (\(\sim 8\) GHz) are supported by the spacecraft telecommunications subsystem for command and telemetry and are used for spacecraft navigation as well as Gravity Science. The spacecraft also includes a Ka-band (\(\sim 32\) GHz) translator and amplifier specifically for the Gravity Science investigation contributed by the Italian Space Agency. The use of two radio frequencies allows for improved accuracy by removal of noise due to charged particles along the radio signal path.  相似文献   
354.
An analysis of the electron density measurements (Ne) along the flyby trajectories over the high-latitude region of the Northern Hemisphere under winter conditions in 2014 and 2016 has shown that the main large-scale structure observed by Swarm satellites is the tongue of ionization (TOI). At the maximum of the solar cycle (F10.7 = 160), the average value of Ne in the TOI region at an altitude of 500 km was 8 × 104 cm–3. Two years later, at F10.7 = 100, Ne ~ 5 × 104 cm–3 and Ne ~2.5 × 104 cm–3 were observed at altitudes of 470 and 530 km, respectively. During the dominance of the azimuthal component of the interplanetary magnetic field, the TOI has been observed mainly on the dawn or dusk side depending on the sign of B y . Simultaneous observations of the convective plasma drift velocity in the polar cap show the transpolar flow drift to the dawn (By < 0) or dusk side (B y < 0). Observations and numerical simulation of the Ne distribution have confirmed the significant role of the electric field of the magnetospheric convection in the generation of large-scale irregularities in the polar ionosphere.  相似文献   
355.
356.
THE ELECTRIC FIELD AND WAVE EXPERIMENT FOR THE CLUSTER MISSION   总被引:1,自引:0,他引:1  
The electric-field and wave experiment (EFW) on Cluster is designed to measure the electric-field and density fluctuations with sampling rates up to 36000 samples s-1. Langmuir probe sweeps can also be made to determine the electron density and temperature. The instrument has several important capabilities. These include (1) measurements of quasi-static electric fields of amplitudes up to 700 mV m-1 with high amplitude and time resolution, (2) measurements over short periods of time of up to five simualtaneous waveforms (two electric signals and three magnetic signals from the seach coil magnetometer sensors) of a bandwidth of 4 kHz with high time resolution, (3) measurements of density fluctuations in four points with high time resolution. Among the more interesting scientific objectives of the experiment are studies of nonlinear wave phenomena that result in acceleration of plasma as well as large- and small-scale interferometric measurements. By using four spacecraft for large-scale differential measurements and several Langmuir probes on one spacecraft for small-scale interferometry, it will be possible to study motion and shape of plasma structures on a wide range of spatial and temporal scales. This paper describes the primary scientific objectives of the EFW experiment and the technical capabilities of the instrument.  相似文献   
357.
Sampling observations of a complete 35d cycle of Her X-1 during 1 March to 5 April 1984 with the low and medium energy X-ray detectors of EXOSAT are presented. The intensities measured in the Argon detectors are compared with the UHURU 35d light curve to obtain the turn-on times of two consecutive cycles as JD 2445753.0 ± 1.0, and JD 2445788.0 ± 0.5. The low energy data is used to determine the rotation period and its derivative as: 1.23779200 s ± 50 ns, and (-2 ± 1) × 10-13 respectively, at the epoch JD 2445778.56. Analysis of the pulse arrival phases indicate that during mid-on phase of the 35d cycle there is shift of about 180°. Evidence for the long term correlated changes of P35 and P1.24s is presented, confirming the low quality of the 35d clock and suggesting that the basic clock mechanism must lie in the disk structure itself.  相似文献   
358.
Medium energy neutral atom (MENA) imager for the IMAGE mission   总被引:1,自引:0,他引:1  
Pollock  C.J.  Asamura  K.  Baldonado  J.  Balkey  M.M.  Barker  P.  Burch  J.L.  Korpela  E.J.  Cravens  J.  Dirks  G.  Fok  M.-C.  Funsten  H.O.  Grande  M.  Gruntman  M.  Hanley  J.  Jahn  J.-M.  Jenkins  M.  Lampton  M.  Marckwordt  M.  McComas  D.J.  Mukai  T.  Penegor  G.  Pope  S.  Ritzau  S.  Schattenburg  M.L.  Scime  E.  Skoug  R.  Spurgeon  W.  Stecklein  T.  Storms  S.  Urdiales  C.  Valek  P.  van Beek  J.T.M.  Weidner  S.E.  Wüest  M.  Young  M.K.  Zinsmeyer  C. 《Space Science Reviews》2000,91(1-2):113-154
The Medium Energy Neutral Atom (MENA) imager was developed in response to the Imaging from the Magnetopause to the Aurora for Global Exploration (IMAGE) requirement to produce images of energetic neutral atoms (ENAs) in the energy range from 1 to 30 keV. These images will be used to infer characteristics of magnetospheric ion distributions. The MENA imager is a slit camera that images incident ENAs in the polar angle (based on a conventional spherical coordinate system defined by the spacecraft spin axis) and utilizes the spacecraft spin to image in azimuth. The speed of incident ENAs is determined by measuring the time-of-flight (TOF) from the entrance aperture to the detector. A carbon foil in the entrance aperture yields secondary electrons, which are imaged using a position-sensitive Start detector segment. This provides both the one-dimensional (1D) position at which the ENA passed through the aperture and a Start time for the TOF system. Impact of the incident ENA on the 1D position-sensitive Stop detector segment provides both a Stop-timing signal and the location that the ENA impacts the detector. The ENA incident polar angle is derived from the measured Stop and Start positions. Species identification (H vs. O) is based on variation in secondary electron yield with mass for a fixed ENA speed. The MENA imager is designed to produce images with 8°×4° angular resolution over a field of view 140°×360°, over an energy range from 1 keV to 30 keV. Thus, the MENA imager is well suited to conduct measurements relevant to the Earth's ring current, plasma sheet, and (at times) magnetosheath and cusp.  相似文献   
359.
360.
Both sensors of the SEIS instrument (VBBs and SPs) are mounted on the mechanical leveling system (LVL), which has to ensure a level placement on the Martian ground under currently unknown local conditions, and provide the mechanical coupling of the seismometers to the ground. We developed a simplified analytical model of the LVL structure in order to reproduce its mechanical behavior by predicting its resonances and transfer function. This model is implemented numerically and allows to estimate the effects of the LVL on the data recorded by the VBBs and SPs on Mars. The model is validated through comparison with the horizontal resonances (between 35 and 50 Hz) observed in laboratory measurements. These modes prove to be highly dependent of the ground horizontal stiffness and torque. For this reason, an inversion study is performed and the results are compared with some experimental measurements of the LVL feet’s penetration in a martian regolith analog. This comparison shows that the analytical model can be used to estimate the elastic ground properties of the InSight landing site. Another application consists in modeling the 6 sensors on the LVL at their real positions, also considering their sensitivity axes, to study the performances of the global SEIS instrument in translation and rotation. It is found that the high frequency ground rotation can be measured by SEIS and, when compared to the ground acceleration, can provide ways to estimate the phase velocity of the seismic surface waves at shallow depths. Finally, synthetic data from the active seismic experiment made during the HP3 penetration and SEIS rotation noise are compared and used for an inversion of the Rayleigh phase velocity. This confirms the perspectives for rotational seismology with SEIS which will be developed with the SEIS data acquired during the commissioning phase after landing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号