首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   398篇
  免费   6篇
  国内免费   3篇
航空   293篇
航天技术   61篇
综合类   7篇
航天   46篇
  2022年   4篇
  2021年   5篇
  2020年   2篇
  2019年   6篇
  2018年   71篇
  2017年   39篇
  2016年   4篇
  2015年   5篇
  2014年   1篇
  2013年   15篇
  2012年   7篇
  2011年   25篇
  2010年   15篇
  2009年   13篇
  2008年   11篇
  2007年   20篇
  2006年   10篇
  2005年   17篇
  2004年   8篇
  2003年   1篇
  2002年   1篇
  2001年   11篇
  2000年   11篇
  1999年   7篇
  1998年   5篇
  1997年   4篇
  1996年   3篇
  1995年   8篇
  1994年   3篇
  1993年   4篇
  1992年   9篇
  1991年   1篇
  1989年   2篇
  1985年   15篇
  1984年   10篇
  1983年   1篇
  1982年   4篇
  1981年   19篇
  1980年   1篇
  1977年   1篇
  1975年   2篇
  1973年   2篇
  1972年   1篇
  1969年   2篇
  1963年   1篇
排序方式: 共有407条查询结果,搜索用时 31 毫秒
111.
At the ionospheric level, the substorm onset (expansion phase) is marked by the initial brightening and subsequent breakup of a pre-existing auroral arc. According to the field line resonance (FLR) wave model, the substorm-related auroral arc is caused by the field-aligned current carried by FLRs. The FLRs are standing shear Alfvén wave structures that are excited along the dipole/quasi-dipole lines of the geomagnetic field. The FLRs (that can cause auroral arc) thread from the Earthward edge of the plasma sheet and link the auroral arc to the plasma sheet region of 6–15 R E. The region is associated with magnetic fluctuations that result from the nonlinear wave-wave interactions of the cross-field current-instability. The instability (excited at the substorm onset) disrupts the cross-tail current which is built up during the growth phase of the substorms and results in magnetic fluctuations. The diversion of the current to polar regions can lead to auroral arc intensification. The current FLR model is based on the amplitude equations that describe the nonlinear space-time evolution of FLRs in the presence of ponderomotive forces exerted by large amplitude FLRs (excited during substorms). The present work will modify the FLR wave model to include the effects arising from magnetic fluctuations that result from current disruption near the plasma sheet (6–15 R E). The nonlinear evolution of FLRs is coupled with the dynamics of plasma sheet through a momentum exchange term (resulting from magnetic fluctuations due to current disruption) in the generalized Ohm's law. The resulting amplitude equations including the effects arising from magnetic fluctuations can be used to study the structure of the auroral arcs formed during substorms. We have also studied the role of feedback mechanism (in a dipole geometry of the geomagnetic field) in the formation of the discrete auroral arc observed on the nightside magnetosphere. The present nonlinear dispersive model (NDM) is extended to include effects arising from the low energy electrons originating from the plasma sheet boundary layer. These electrons increase the ionospheric conductivity in a localized patch and enhance the field-aligned current through a feedback mechanism. The feedback effects were studied numerically in a dipole geometry using the the NDM. The numerical studies yield the magnitude of the field-aligned current that is large enough to form a discrete auroral arc. Our studies provide theoretical support to the observational work of Newell et al. that the feedback instability plays a major role in the formation of the discrete auroral arcs observed on the nightside magnetosphere.  相似文献   
112.
During the 3rd main expedition on board the “Salyut-6” orbital station in 1979 the integral characteristics of cosmic radiation were measured in various positions inside the manned modules (experiment “Integral”). Measurements were performed with thermoluminescent dosimeters, photographic films and solid state plastic detectors supplied for the experiment by specialists of the USSR, Bulgaria, Hungary, GDR and Romania. The dose gradient inside the manned modules of the station amounted to 70 % for long intervals of time. During the experimental period the dose rate inside the station was 15 to 30 mrad per day. The mean flux of particles with z 6 and LET 200 keV/μm was found to be 0.22 cm−2 day−1.  相似文献   
113.
The 2018 InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) Mission has the mission goal of providing insitu data for the first measurement of the geothermal heat flow of Mars. The Heat Flow and Physical Properties Package (HP3) will take thermal conductivity and thermal gradient measurements to approximately 5 m depth. By necessity, this measurement will be made within a few meters of the lander. This means that thermal perturbations from the lander will modify local surface and subsurface temperature measurements. For HP3’s sensitive thermal gradient measurements, this spacecraft influence will be important to model and parameterize. Here we present a basic 3D model of thermal effects of the lander on its surroundings. Though lander perturbations significantly alter subsurface temperatures, a successful thermal gradient measurement will be possible in all thermal conditions by proper (\(>3~\mbox{m}\) depth) placement of the heat flow probe.  相似文献   
114.
The Juno Radiation Monitoring (RM) Investigation   总被引:1,自引:0,他引:1  
The Radiation Monitoring Investigation of the Juno Mission will actively retrieve and analyze the noise signatures from penetrating radiation in the images of Juno’s star cameras and science instruments at Jupiter. The investigation’s objective is to profile Jupiter’s \(>10\mbox{-MeV}\) electron environment in regions of the Jovian magnetosphere which today are still largely unexplored. This paper discusses the primary instruments on Juno which contribute to the investigation’s data suite, the measurements of camera noise from penetrating particles, spectral sensitivities and measurement ranges of the instruments, calibrations performed prior to Juno’s first science orbit, and how the measurements may be used to infer the external relativistic electron environment.  相似文献   
115.
116.
The ultraviolet spectrograph instrument on the Juno mission (Juno-UVS) is a long-slit imaging spectrograph designed to observe and characterize Jupiter’s far-ultraviolet (FUV) auroral emissions. These observations will be coordinated and correlated with those from Juno’s other remote sensing instruments and used to place in situ measurements made by Juno’s particles and fields instruments into a global context, relating the local data with events occurring in more distant regions of Jupiter’s magnetosphere. Juno-UVS is based on a series of imaging FUV spectrographs currently in flight—the two Alice instruments on the Rosetta and New Horizons missions, and the Lyman Alpha Mapping Project on the Lunar Reconnaissance Orbiter mission. However, Juno-UVS has several important modifications, including (1) a scan mirror (for targeting specific auroral features), (2) extensive shielding (for mitigation of electronics and data quality degradation by energetic particles), and (3) a cross delay line microchannel plate detector (for both faster photon counting and improved spatial resolution). This paper describes the science objectives, design, and initial performance of the Juno-UVS.  相似文献   
117.
118.
In March/April 1984 eleven EXOSAT observations of Her X-1 were performed sampling a full 35 day cycle. Spectral analysis of the ME and GSPC data shows that the iron line emission is present during all phases. During the main-on state we see an iron line at 6.65 ± 0.07 keV with a FWHM of 1–2 keV and an equivalent width of 300 to 400 eV. The high resolution GSPC data indicate that the line profiles have external wings and are not simple Gaussian. We report for the first time on the detection of an iron line during the intermediate-on state with about the same parameters as the main-on state line but an equivalent width a factor of 2 larger. During the off state between main-on and intermediate-on we detected a broad iron line feature at about 6.0 keV with an equivalent width of 2 keV. We discuss the Alfven region and a hot corona at the inner region of the accretion disk as the possible sites of the line production.  相似文献   
119.
During the last several years significant progress has been made in understanding MHD turbulence in the Earth’s plasma sheet. Due to the statistically transitory properties of fluctuations, finite size and boundary effects, however, issues of fundamental importance remain unresolved. Here we concentrate on such intrinsic features of plasma sheet turbulence as its origin and dynamical nature. In particular, we investigate bursty bulk flow driven multi-scale transfer of energy towards the dissipation scale, and provide evidence for the presence of non-linear interactions. We show that, in contrast with previous results, Alfvénic fluctuations together with 2D eddy interactions may appear as important constituents of turbulence in the plasma sheet.  相似文献   
120.
L10-TiAl金属间化合物Mn,Nb合金化电子结构的计算   总被引:6,自引:0,他引:6  
采用第一原理赝势平面波方法计算了L10型TiAl金属间化合物中掺入Mn,Nb后的电子结构和价键结构.通过合金原子形成热得出Mn优先占据Al点阵位置,Nb优先占据Ti点阵位置.Mulliken聚居数分析发现Mn或Nb合金化后,分别降低了(001)和(002)面内的原子间键合强度,掺入Nb还降低了层间的原子间键合强度,而掺入Mn,则使层间原子间键合强度增加.整体上来讲,掺入Mn有利于改善TiAl的室温脆性,而掺入Nb,不利于改善TiAl的室温脆性.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号