全文获取类型
收费全文 | 182篇 |
免费 | 0篇 |
专业分类
航空 | 76篇 |
航天技术 | 92篇 |
航天 | 14篇 |
出版年
2021年 | 2篇 |
2018年 | 1篇 |
2016年 | 1篇 |
2015年 | 2篇 |
2014年 | 7篇 |
2013年 | 9篇 |
2012年 | 7篇 |
2011年 | 9篇 |
2010年 | 12篇 |
2009年 | 15篇 |
2008年 | 18篇 |
2007年 | 2篇 |
2006年 | 4篇 |
2005年 | 8篇 |
2004年 | 9篇 |
2003年 | 8篇 |
2002年 | 5篇 |
2001年 | 4篇 |
2000年 | 7篇 |
1999年 | 4篇 |
1998年 | 4篇 |
1997年 | 4篇 |
1996年 | 3篇 |
1995年 | 4篇 |
1994年 | 10篇 |
1993年 | 7篇 |
1992年 | 5篇 |
1991年 | 3篇 |
1988年 | 2篇 |
1985年 | 3篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1981年 | 1篇 |
排序方式: 共有182条查询结果,搜索用时 15 毫秒
1.
Response of Hainan GPS ionospheric scintillations to the different strong magnetic storm conditions 总被引:2,自引:0,他引:2
S.P. Shang J.K. Shi P.M. Kintner W.M. Zhen X.G. Luo S.Z. Wu G.J. Wang 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(4):579-586
Using the GPS ionospheric scintillation data at Hainan station (19.5°N, 109.1°E) in the eastern Asia equatorial regions and relevant ionospheric and geomagnetic data from July 2003 to June 2005, we investigate the response of L-band ionospheric scintillation activity over this region to different strong magnetic storm conditions (Dst < −100 nT) during the descending phase of the solar cycle. These strong storms and corresponding scintillations mainly took place in winter and summer seasons. When the main phase developed rapidly and reached the maximum near 20–21 LT (LT = UT + 8) after sunset, scintillations might occur in the following recovery phase. When the main phase maximum occurred shortly after midnight near 01–02 LT, following the strong scintillations in the pre-midnight main phase, scintillations might also occur in the post-midnight recovery phase. When the main phase maximum took place after 03 LT to the early morning hours no any scintillation could be observed in the latter of the night. Moreover, when the main phase maximum occurred during the daytime hours, scintillations could also hardly be observed in the following nighttime recovery phase, which might last until the end of recovery phase. Occasionally, scintillations also took place in the initial phase of the storm. During those scintillations associated with the nighttime magnetic storms, the height of F layer base (h’F) was evidently increased. However, the increase of F layer base height does not always cause the occurrence of scintillations, which indicates the complex interaction of various disturbance processes in ionosphere and thermosphere systems during the storms. 相似文献
2.
The Lunar Gravity Ranging System for the Gravity Recovery and Interior Laboratory (GRAIL) Mission 总被引:1,自引:0,他引:1
William M. Klipstein Bradford W. Arnold Daphna G. Enzer Alberto A. Ruiz Jeffrey Y. Tien Rabi T. Wang Charles E. Dunn 《Space Science Reviews》2013,178(1):57-76
The Lunar Gravity Ranging System (LGRS) flying on NASA’s Gravity Recovery and Interior Laboratory (GRAIL) mission measures fluctuations in the separation between the two GRAIL orbiters with sensitivity below 0.6 microns/Hz1/2. GRAIL adapts the mission design and instrumentation from the Gravity Recovery and Climate Experiment (GRACE) to a make a precise gravitational map of Earth’s Moon. Phase measurements of Ka-band carrier signals transmitted between spacecraft with line-of-sight separations between 50 km to 225 km provide the primary observable. Measurements of time offsets between the orbiters, frequency calibrations, and precise orbit determination provided by the Global Positioning System on GRACE are replaced by an S-band time-transfer cross link and Deep Space Network Doppler tracking of an X-band radioscience beacon and the spacecraft telecommunications link. Lack of an atmosphere at the Moon allows use of a single-frequency link and elimination of the accelerometer compared to the GRACE instrumentation. This paper describes the implementation, testing and performance of the instrument complement flown on the two GRAIL orbiters. 相似文献
3.
G. Navarro I. Caballero L. Prieto A. Vázquez S. Flecha I.E. Huertas J. Ruiz 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
Seasonal-to-interannual variability of the winter-spring bloom in the Gulf of Cádiz, eastern North Atlantic, has been investigated using chlorophyll-a remote sensing (CHL). These data have been obtained from the GlobColour project; the temporal coverage extends from September 1997 to December 2010. In this study we develop a generic quantitative approach for describing the temporal variability in the shape of the winter-spring bloom within a region. Variability in both the timing and magnitude of the bloom in the basin has been evaluated as a function of physical properties in the water column such as Mixed Layer Depth (MLD, GODAS model), sea surface temperature (SST, from AVHRR radiometers), photosynthetically-active radiation (PAR, from ocean color data) and euphotic depth (Zeu, from ocean color data). The analysis indicated that the timing, size and duration of the phytoplankton bloom in this area are largely controlled by both meteorological and oceanographic conditions at different scales; this means that it is likely to vary widely from one year to another. 相似文献
4.
M. Amenomori S. Ayabe X.J. Bi D. Chen S.W. Cui Danzengluobu L.K. Ding X.H. Ding C.F. Feng Zhaoyang Feng Z.Y. Feng X.Y. Gao Q.X. Geng H.W. Guo H.H. He M. He K. Hibino N. Hotta Haibing Hu H.B. Hu J. Huang Q. Huang H.Y. Jia F. Kajino K. Kasahara Y. Katayose C. Kato K. Kawata Labaciren G.M. Le A.F. Li J.Y. Li Y.-Q. Lou H. Lu S.L. Lu X.R. Meng K. Mizutani J. Mu K. Munakata A. Nagai H. Nanjo M. Nishizawa M. Ohnishi I. Ohta H. Onuma T. Ouchi S. Ozawa J.R. Ren T. Saito T.Y. Saito 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
5.
6.
The Radio Plasma Imager investigation on the IMAGE spacecraft 总被引:1,自引:0,他引:1
Reinisch B.W. Haines D.M. Bibl K. Cheney G. Galkin I.A. Huang X. Myers S.H. Sales G.S. Benson R.F. Fung S.F. Green J.L. Boardsen S. Taylor W.W.L. Bougeret J.-L. Manning R. Meyer-Vernet N. Moncuquet M. Carpenter D.L. Gallagher D.L. Reiff P. 《Space Science Reviews》2000,91(1-2):319-359
Radio plasma imaging uses total reflection of electromagnetic waves from plasmas whose plasma frequencies equal the radio sounding frequency and whose electron density gradients are parallel to the wave normals. The Radio Plasma Imager (RPI) has two orthogonal 500-m long dipole antennas in the spin plane for near omni-directional transmission. The third antenna is a 20-m dipole along the spin axis. Echoes from the magnetopause, plasmasphere and cusp will be received with the three orthogonal antennas, allowing the determination of their angle-of-arrival. Thus it will be possible to create image fragments of the reflecting density structures. The instrument can execute a large variety of programmable measuring options at frequencies between 3 kHz and 3 MHz. Tuning of the transmit antennas provides optimum power transfer from the 10 W transmitter to the antennas. The instrument can operate in three active sounding modes: (1) remote sounding to probe magnetospheric boundaries, (2) local (relaxation) sounding to probe the local plasma frequency and scalar magnetic field, and (3) whistler stimulation sounding. In addition, there is a passive mode to record natural emissions, and to determine the local electron density, the scalar magnetic field, and temperature by using a thermal noise spectroscopy technique. 相似文献
7.
Green J.L. Benson R.F. Fung S.F. Taylor W.W.L. Boardsen S.A. Reinisch B.W. Haines D.M. Bibl K. Cheney G. Galkin I.A. Huang X. Myers S.H. Sales G.S. Bougeret J.-L. Manning R. Meyer-Vernet N. Moncuquet M. Carpenter D.L. Gallagher D.L. Reiff P.H. 《Space Science Reviews》2000,91(1-2):361-389
The Radio Plasma Imager (RPI) will be the first-of-its kind instrument designed to use radio wave sounding techniques to perform repetitive remote sensing measurements of electron number density (N
e) structures and the dynamics of the magnetosphere and plasmasphere. RPI will fly on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) mission to be launched early in the year 2000. The design of the RPI is based on recent advances in radio transmitter and receiver design and modern digital processing techniques perfected for ground-based ionospheric sounding over the last two decades. Free-space electromagnetic waves transmitted by the RPI located in the low-density magnetospheric cavity will be reflected at distant plasma cutoffs. The location and characteristics of the plasma at those remote reflection points can then be derived from measurements of the echo amplitude, phase, delay time, frequency, polarization, Doppler shift, and echo direction. The 500 m tip-to-tip X and Y (spin plane) antennas and 20 m Z axis antenna on RPI will be used to measures echoes coming from distances of several R
E. RPI will operate at frequencies between 3 kHz to 3 MHz and will provide quantitative N
e values from 10–1 to 105 cm–3. Ray tracing calculations, combined with specific radio imager instrument characteristics, enables simulations of RPI measurements. These simulations have been performed throughout an IMAGE orbit and under different model magnetospheric conditions. They dramatically show that radio sounding can be used quite successfully to measure a wealth of magnetospheric phenomena such as magnetopause boundary motions and plasmapause dynamics. The radio imaging technique will provide a truly exciting opportunity to study global magnetospheric dynamics in a way that was never before possible. 相似文献
8.
A recursive multiple model approach to noise identification 总被引:2,自引:0,他引:2
Correct knowledge of noise statistics is essential for an estimator or controller to have reliable performance. In practice, however, the noise statistics are unknown or not known perfectly and thus need to be identified. Previous work on noise identification is limited to stationary noise and noise with slowly varying statistics only. An approach is presented here that is valid for nonstationary noise with rapidly or slowly varying statistics as well as stationary noise. This approach is based on the estimation with multiple hybrid system models. As one of the most cost-effective estimation schemes for hybrid system, the interacting multiple model (IMM) algorithm is used in this approach. The IMM algorithm has two desirable properties: it is recursive and has fixed computational requirements per cycle. The proposed approach is evaluated via a number of representative examples by both Monte Carlo simulations and a nonsimulation technique of performance prediction developed by the authors recently. The application of the proposed approach to failure detection is also illustrated 相似文献
9.
46 magnetosheath crossing events from the two years (2001.2-2003.1) of Cluster magnetic field measurements are identified and used to investigate the characters of the magnetic field fluctuations in the regions of undisturbed solar wind, foreshock, magnetosheath. The preliminary results indicate the properties of the plasma turbulence in the magnetosheath are strongly controlled by IMF orientation with respect to the bow shock normal. The amplitude of the magnetic field magnitude and direction variations behind quasi-parallel bow shock are larger than those behind quasi-perpendicular bow shock. Almost purely compressional waves are found in quasi-perpendicular magnetosheath. 相似文献
10.
Cadzow J.A. Wilkes D.M. Peters R.A. II Li X. 《IEEE transactions on aerospace and electronic systems》1993,29(4):1110-1122
A synthesis-by-analysis model for texture replication or simulation is presented. This model can closely replicate a given textured image or produce another image that although distinct from the original, has the same general visual characteristics and the same first and second-order gray-level statistics as the original image. The texture synthesis algorithm, proposed contains three distinct components: a moving-average (MA) filter, a filter excitation function, and a gray-level histogram. The analysis portion of the texture synthesis algorithm derives the three from a given image. The synthesis portion convolves the MA filter kernel with the excitation function, adds noise, and modifies the histogram of the result. The advantages of this texture model over others include conceptually and computationally simple and robust parameter estimation, inherent stability, parsimony in the number of parameters, and synthesis through convolution. The authors describe a procedure for deriving the correct MA kernel using a signal enhancement algorithm, demonstrate the effectiveness of the model by using it to mimic several diverse textured images, discuss its applicability to the problem of infrared background simulation, and include detailed algorithms for the implementation of the model 相似文献