首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
航空   2篇
航天技术   6篇
航天   1篇
  2011年   2篇
  1998年   1篇
  1993年   4篇
  1983年   1篇
  1977年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
The Voyager Ultraviolet Spectrometer (UVS) is an objective grating spectrometer covering the wavelength range of 500–1700 Å with 10 Å resolution. Its primary goal is the determination of the composition and structure of the atmospheres of Jupiter, Saturn, Uranus and several of their satellites. The capability for two very different observational modes have been combined in a single instrument. Observations in the airglow mode measure radiation from the atmosphere due to resonant scattering of the solar flux or energetic particle bombardment, and the occultation mode provides measurements of the atmospheric extinction of solar or stellar radiation as the spacecraft enters the shadow zone behind the target. In addition to the primary goal of the solar system atmospheric measurements, the UVS is expected to make valuable contributions to stellar astronomy at wavelengths below 1000 Å.  相似文献   
2.
COMPTEL is the first imaging telescope to explore the MeV gamma-ray range (0.7 to 30 MeV). At present, it is performing a complete sky survey. In later phases of the mission selected celestial objects will be studied in more detail. The data from the first year of the mission have demonstrated that COMPTEL performs very well. First sky maps of the inner part of the Galaxy clearly identify the plane as a bright MeV-source (probably due to discrete sources as well as diffuse radiation). The Crab and Vela pulsar lightcurves have been measured with unprecedented accuracy. The quasars 3C273 and 3C279 have been seen for the first time at MeV energies. Both quasars show a break in their energy spectra in the COMPTEL energy range. The 1.8 MeV line from radioactive 26A1 has been detected from the central region of the Galaxy and a first sky map of the inner part of the Galaxy has been obtained in the light of this line. Upper limits to gamma-ray line emission at 847 keV and 1.238 MeV from SN 1991T have been derived. Upper limits to the interstellar gamma-ray emissivity have been determined at MeV-energies. Several cosmic gamma-ray bursts within the field-of-view have been located with an accuracy of about 1°. On 1991 June 9, 11 and 15, COMPTEL observed gamma-ray emission (continuum and line) from three solar flares. Also neutrons were detected from the June 9 and June 15 flares.  相似文献   
3.
X-radiation from energetic electrons is the prime diagnostic of flare-accelerated electrons. The observed X-ray flux (and polarization state) is fundamentally a convolution of the cross-section for the hard X-ray emission process(es) in question with the electron distribution function, which is in turn a function of energy, direction, spatial location and time. To address the problems of particle propagation and acceleration one needs to infer as much information as possible on this electron distribution function, through a deconvolution of this fundamental relationship. This review presents recent progress toward this goal using spectroscopic, imaging and polarization measurements, primarily from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Previous conclusions regarding the energy, angular (pitch angle) and spatial distributions of energetic electrons in solar flares are critically reviewed. We discuss the role and the observational evidence of several radiation processes: free-free electron-ion, free-free electron-electron, free-bound electron-ion, photoelectric absorption and Compton backscatter (albedo), using both spectroscopic and imaging techniques. This unprecedented quality of data allows for the first time inference of the angular distributions of the X-ray-emitting electrons and improved model-independent inference of electron energy spectra and emission measures of thermal plasma. Moreover, imaging spectroscopy has revealed hitherto unknown details of solar flare morphology and detailed spectroscopy of coronal, footpoint and extended sources in flaring regions. Additional attempts to measure hard X-ray polarization were not sufficient to put constraints on the degree of anisotropy of electrons, but point to the importance of obtaining good quality polarization data in the future.  相似文献   
4.
We present a model of the galactic habitable zone (GHZ), described in terms of the spatial and temporal dimensions of the Galaxy that may favor the development of complex life. The Milky Way galaxy was modeled using a computational approach by populating stars and their planetary systems on an individual basis by employing Monte Carlo methods. We began with well-established properties of the disk of the Milky Way, such as the stellar number density distribution, the initial mass function, the star formation history, and the metallicity gradient as a function of radial position and time. We varied some of these properties and created four models to test the sensitivity of our assumptions. To assess habitability on the galactic scale, we modeled supernova rates, planet formation, and the time required for complex life to evolve. Our study has improved on other literature on the GHZ by populating stars on an individual basis and modeling Type II supernova (SNII) and Type Ia supernova (SNIa) sterilizations by selecting their progenitors from within this preexisting stellar population. Furthermore, we considered habitability on tidally locked and non-tidally locked planets separately and studied habitability as a function of height above and below the galactic midplane. In the model that most accurately reproduces the properties of the Galaxy, the results indicate that an individual SNIa is ~5.6× more lethal than an individual SNII on average. In addition, we predict that ~1.2% of all stars host a planet that may have been capable of supporting complex life at some point in the history of the Galaxy. Of those stars with a habitable planet, ~75% of planets are predicted to be in a tidally locked configuration with their host star. The majority of these planets that may support complex life are found toward the inner Galaxy, distributed within, and significantly above and below, the galactic midplane.  相似文献   
5.
A directional detector for γ-ray astronomy has been developed to image sources in the energy range 0.1 to 5 MeV. An array of 35 gain stabilized bismuth germanate detectors, together with a coded aperture mask based on a Uniformly Redundant Array (URA), allows imaging in 4° square sky bins over a 16° X 24° field-of-view. The position of a strong point source, such as the Crab Nebula, can be determined to within ?1°. A complementary “anti-mask” greatly reduces systematic effects arising from non-uniform background rates amongst the detectors. The telescope has an effective area of 190 cm2 and an energy resolution of 19.5% FWHM at 662 keV. Results of laboratory tests of the imaging system, including the ability to image multiple sources, uniformity of response over the field-of-view, and the effect of the “anti-mask”, are in good agreement with computer simulations. Features of the flight detector system are described and results of laboratory tests and computer simulations are reviewed. A balloon flight of the telescope is planned for the fall of 1982.  相似文献   
6.
The COMPTEL experiment on the Compton Gamma-Ray Observatory is designed to image celestial gamma radiation in the energy range from 0.75–30 MeV within a field of view of 1 steradian. It can locate stronger point sources with an accuracy better than 0.5° and is capable of mapping diffuse emission as well. The Galactic-center region was observed by COMPTEL for several 2-week periods in 1991/1992. These observations show evidence for 1.8 MeV line emission along the Galactic disk (attributed to radioactive 26Al), extending over at least 40 degrees in longitude.  相似文献   
7.
During the first part of the COMPTON Gamma Ray Observatory sky survey, COMPTEL has detected the quasars 3C273 and 3C279 and the radio galaxy Centaurus A. This paper summarizes the preliminary findings and gives an upper limit on the MeV flux of the Seyfert galaxy NGC4151.  相似文献   
8.
On four occasions, twice in 1991 (near solar maximum) and twice in 1994 (near solar minimum), one COMPTEL D1 detector module was used as an omnidirectional detector to measure the high-energy (>12.8 MeV) neutron flux near an altitude of 450 km. The Dl modules are cylindrical, with radius 13.8 cm and depth 8 cm, and are filled with liquid scintillator (NE213A). The combined flux measurements can be fit reasonably well by a product of the Mt. Washington neutron monitor rate, a linear function in the spacecraft geocenter zenith angle, and an exponential function of the vertical geomagnetic cutoff rigidity in which the coefficient of the rigidity is a linear function of the neutron monitor rate. When pointed at the nadir, the flux is consistent with that expected from the atmospheric neutron albedo alone. When pointed at the zenith the flux is reduced by a factor of about 0.54. Thus the production of secondary neutrons in the massive (16000 kg) Compton Gamma-Ray Observatory spacecraft is negligible. Rather, the mass of the spacecraft provides shielding from the earth albedo.  相似文献   
9.
The COMPTEL experiment on GRO images 0.7 – 30 MeV celestial gamma-radiation that falls within its 1 steradian field of view. During the first fifteen months in orbit, preliminary localizations from BATSE triggers indicated that about 1 in 6 cosmic events could have fallen within COMPTEL's field of view. We summarize work on the brightest of these gamma-ray bursts and present new position constraints for GRB 911118 and GRB 920622.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号