排序方式: 共有2条查询结果,搜索用时 4 毫秒
1
1.
通过对卫星太阳电池阵输出电流影响因子进行分析,提出了一种基于人工蜂群(Artificial bee colony,ABC)算法优化BP神经网络的太阳电池阵输出电流预测方法。将太阳入射角、卫星太阳电池阵工作温度、卫星星时等遥测量变换后作为神经网络输入,进行输出电流预测。考虑到神经网络对初始权值及偏置敏感的特点,采用ABC改进算法对神经网络初始参数进行优化。该模型可用于卫星太阳电池阵电流输出能力分析、太阳电池阵预警及异常检测等。实验测试表明,模型能够取得较高预测精度,同星预测均方根误差(Mean squared error, MSE)为0.10 A,跨星预测均方根误差为0.12 A,其精度明显优于传统数据拟合方法。利用该模型及本文提出的预警策略进行预警,对于7年5个月的正常卫星数据没有发生误报,对于某异常卫星数据能够及时进行预警。 相似文献
1