全文获取类型
收费全文 | 397篇 |
免费 | 1篇 |
国内免费 | 2篇 |
专业分类
航空 | 154篇 |
航天技术 | 83篇 |
综合类 | 3篇 |
航天 | 160篇 |
出版年
2021年 | 3篇 |
2019年 | 5篇 |
2018年 | 4篇 |
2017年 | 5篇 |
2016年 | 2篇 |
2015年 | 3篇 |
2014年 | 9篇 |
2013年 | 17篇 |
2012年 | 7篇 |
2011年 | 38篇 |
2010年 | 15篇 |
2009年 | 31篇 |
2008年 | 19篇 |
2007年 | 19篇 |
2006年 | 19篇 |
2005年 | 11篇 |
2004年 | 7篇 |
2003年 | 17篇 |
2002年 | 9篇 |
2001年 | 5篇 |
2000年 | 15篇 |
1999年 | 9篇 |
1998年 | 9篇 |
1997年 | 6篇 |
1996年 | 8篇 |
1995年 | 4篇 |
1994年 | 4篇 |
1993年 | 2篇 |
1991年 | 4篇 |
1989年 | 5篇 |
1988年 | 5篇 |
1987年 | 4篇 |
1986年 | 12篇 |
1985年 | 16篇 |
1984年 | 2篇 |
1983年 | 3篇 |
1982年 | 2篇 |
1981年 | 4篇 |
1980年 | 4篇 |
1979年 | 3篇 |
1978年 | 2篇 |
1974年 | 2篇 |
1973年 | 4篇 |
1971年 | 1篇 |
1970年 | 2篇 |
1968年 | 6篇 |
1967年 | 7篇 |
1966年 | 3篇 |
1965年 | 1篇 |
1963年 | 1篇 |
排序方式: 共有400条查询结果,搜索用时 15 毫秒
1.
S.I. Oronsaye L.A. McKinnell J.B. Habarulema 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
A new version of global empirical model for the ionospheric propagation factor, M(3000)F2 prediction is presented. Artificial neural network (ANN) technique was employed by considering the relevant geophysical input parameters which are known to influence the M(3000)F2 parameter. This new version is an update to the previous neural network based M(3000)F2 global model developed by Oyeyemi et al. (2007), and aims to address the inadequacy of the International Reference Ionosphere (IRI) M(3000)F2 model (the International Radio Consultative Committee (CCIR) M(3000)F2 model). The M(3000)F2 has been found to be relatively inaccurate in representing the diurnal structure of the low latitude region and the equatorial ionosphere. In particular, the existing hmF2 IRI model is unable to reproduce the sharp post-sunset drop in M(3000)F2 values, which correspond to a sharp post-sunset peak in the peak height of the F2 layer, hmF2. Data from 80 ionospheric stations globally, including a good number of stations in the low latitude region were considered for this work. M(3000)F2 hourly values from 1987 to 2008, spanning all periods of low and high solar activity were used for model development and verification process. The ability of the new model to predict the M(3000)F2 parameter especially in the low latitude and equatorial regions, which is known to be problematic for the existing IRI model is demonstrated. 相似文献
2.
Numerical simulations of energy depositions in the middle and upper solar chromosphere result in ejection of chromospheric material into the corona and heating of the chromospheric gas. These simulations may be capable of describing some of the features seen by the soft X-ray telescope on board theYohkoh satellite. 相似文献
3.
John C. Raymond Raid Suleiman John L. Kohl Giancarlo Noci 《Space Science Reviews》1998,85(1-2):283-289
A great deal of evidence for elemental abundance variations among different structures in the solar corona has accumulated
over the years. Many of the observations show changes in the relative abundances of high- and low-First Ionization Potential
elements, but relatively few show the absolute elemental abundances. Recent observations from the SOHO satellite give absolute
abundances in coronal streamers. Along the streamer edges, and at low heights in the streamer, they show roughly photospheric
abundances for the low-FIP elements, and a factor of 3 depletion of high-FIP elements. In the streamer core at 1.5 R·, both
high- and low-FIP elements are depleted by an additional factor of 3, which appears to result from gravitational settling.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
4.
Plasmaspheric Density Structures and Dynamics: Properties Observed by the CLUSTER and IMAGE Missions 总被引:1,自引:0,他引:1
Fabien Darrouzet Dennis L. Gallagher Nicolas André Donald L. Carpenter Iannis Dandouras Pierrette M. E. Décréau Johan De Keyser Richard E. Denton John C. Foster Jerry Goldstein Mark B. Moldwin Bodo W. Reinisch Bill R. Sandel Jiannan Tu 《Space Science Reviews》2009,145(1-2):55-106
Plasmaspheric density structures have been studied since the discovery of the plasmasphere in the late 1950s. But the advent of the Cluster and Image missions in 2000 has added substantially to our knowledge of density structures, thanks to the new capabilities of those missions: global imaging with Image and four-point in situ measurements with Cluster. The study of plasma sources and losses has given new results on refilling rates and erosion processes. Two-dimensional density images of the plasmasphere have been obtained. The spatial gradient of plasmaspheric density has been computed. The ratios between H+, He+ and O+ have been deduced from different ion measurements. Plasmaspheric plumes have been studied in detail with new tools, which provide information on their morphology, dynamics and occurrence. Density structures at smaller scales have been revealed with those missions, structures that could not be clearly distinguished before the global images from Image and the four-point measurements by Cluster became available. New terms have been given to these structures, like “shoulders”, “channels”, “fingers” and “crenulations”. This paper reviews the most relevant new results about the plasmaspheric plasma obtained since the start of the Cluster and Image missions. 相似文献
5.
6.
7.
8.
Zama T. Katamzi John Bosco Habarulema 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
This paper presents traveling ionospheric disturbances (TIDs) observations from GPS measurements over the South African region during the geomagnetically disturbed period of 29–31 October 2003. Two receiver arrays, which were along two distinct longitudinal sectors of about 18°-20° and 27°-28° were used in order to investigate the amplitude, periods and virtual propagation characteristics of the storm induced ionospheric disturbances. The study revealed a large sudden TEC increase on 28 October 2003, the day before the first of the two major storms studied here, that was recorded simultaneously by all the receivers used. This pre-storm enhancement was linked to an X-class solar flare, auroral/magnetospheric activities and vertical plasma drift, based on the behaviour of the geomagnetic storm and auroral indices as well as strong equatorial electrojet. Diurnal trends of the TEC and foF2 measurements revealed that the geomagnetic storm caused a negative ionospheric storm; these parameters were depleted between 29 and 31 October 2003. Large scale traveling ionospheric disturbances were observed on the days of the geomagnetic storms (29 and 31 October 2003), using line-of-sight vertical TEC (vTEC) measurements from individual satellites. Amplitude and dominant periods of these structures varied between 0.08–2.16 TECU, and 1.07–2.13 h respectively. The wave structures were observed to propagate towards the equator with velocities between 587.04 and 1635.09 m/s. 相似文献
9.
Katsuyuki Noguchi Andreas Richter Heinrich Bovensmann Andreas Hilboll John P. Burrows Hitoshi Irie Sachiko Hayashida Yu Morino 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
We have conducted a feasibility study for the geostationary monitoring of the diurnal variation of tropospheric NO2 over Tokyo. Using NO2 fields from a chemical transport model, synthetic spectra were created by a radiative transfer model, SCIATRAN, for summer and winter cases. We then performed a Differential Optical Absorption Spectroscopy (DOAS) analysis to retrieve NO2 slant column densities (SCDs), and after converting SCDs into vertical column densities (VCDs), we estimated the precision of the retrieved VCDs. The simulation showed that signal-to-noise ratio (SNR) ? 500 is needed to detect the diurnal variation and that SNR ? 1000 is needed to observe the local minimum occurring in the early afternoon (LT13–14) in summer. In winter, the detection of the diurnal variation during LT08–15 needs SNR ? 500, and SNR ? 1000 is needed if early morning (LT07) and early evening (LT16) are included. The currently discussed sensor specification for the Japanese geostationary satellite project, GMAP-Asia, which has a horizontal resolution of 10 km and a temporal resolution of 1hr, has demonstrated the performance of a precision of several percent, which is approximately corresponding to SNR = 1000–2000 during daytime and SNR ? 500 in the morning and evening. We also discuss possible biases caused by the temperature dependence of the absorption cross section utilized in the DOAS retrieval, and the effect of uncertainties of surface albedo and clouds on the estimation of precisions. 相似文献
10.
John A. Arredondo 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(1):111-121
In this paper we find the families of relative equilibria for the three body problem in the plane, when the interaction between the bodies is given by a quasi-homogeneous potential. The number of the relative equilibria depends on the values of the masses and on the size of the system, measured by the moment of inertia. 相似文献