排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Nathan R. Boone Robert A. Bettinger 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(8):2319-2332
The theoretical analysis of the motion of natural space debris near the stable Earth-Moon Lagrange Points, and , is presented with a focus on the potential debris risks to spacecraft operating near these points. Specifically, the research formulates a debris propagation model using four-body dynamics, then applies candidate probabilistic survivability models to a notional spacecraft operating at the and Lagrange points to quantify the collision risks to the spacecraft from natural debris particles. Of the survivability models implemented, the natural debris collision risks to spacecraft survivability are found to be incredibly low, but mitigation strategies to reduce the risk further are identified in this study. Overall, research into stable Lagrange point natural debris propagation improves understanding of the collision risks posed by the naturally occurring Kordylewski clouds and enhances operational planning for Lagrange point space missions. 相似文献
2.
P Tsou DE Brownlee CP McKay AD Anbar H Yano K Altwegg LW Beegle R Dissly NJ Strange I Kanik 《Astrobiology》2012,12(8):730-742
Abstract Life Investigation For Enceladus (LIFE) presents a low-cost sample return mission to Enceladus, a body with high astrobiological potential. There is ample evidence that liquid water exists under ice coverage in the form of active geysers in the "tiger stripes" area of the southern Enceladus hemisphere. This active plume consists of gas and ice particles and enables the sampling of fresh materials from the interior that may originate from a liquid water source. The particles consist mostly of water ice and are 1-10?μ in diameter. The plume composition shows H(2)O, CO(2), CH(4), NH(3), Ar, and evidence that more complex organic species might be present. Since life on Earth exists whenever liquid water, organics, and energy coexist, understanding the chemical components of the emanating ice particles could indicate whether life is potentially present on Enceladus. The icy worlds of the outer planets are testing grounds for some of the theories for the origin of life on Earth. The LIFE mission concept is envisioned in two parts: first, to orbit Saturn (in order to achieve lower sampling speeds, approaching 2 km/s, and thus enable a softer sample collection impact than Stardust, and to make possible multiple flybys of Enceladus); second, to sample Enceladus' plume, the E ring of Saturn, and the Titan upper atmosphere. With new findings from these samples, NASA could provide detailed chemical and isotopic and, potentially, biological compositional context of the plume. Since the duration of the Enceladus plume is unpredictable, it is imperative that these samples are captured at the earliest flight opportunity. If LIFE is launched before 2019, it could take advantage of a Jupiter gravity assist, which would thus reduce mission lifetimes and launch vehicle costs. The LIFE concept offers science returns comparable to those of a Flagship mission but at the measurably lower sample return costs of a Discovery-class mission. Key Words: Astrobiology-Habitability-Enceladus-Biosignatures. Astrobiology 12, 730-742. 相似文献
3.
Beginning in 1995, a team of 3-D engineering visualization experts assembled at the Lockheed Martin Space Systems Company and began to develop innovative virtual prototyping simulation tools for performing ground processing and real-time visualization of design and planning of aerospace missions. At the University of Colorado, a team of 3-D visualization experts also began developing the science of 3-D visualization and immersive visualization at the newly founded British Petroleum (BP) Center for visualization, which began operations in October, 2001. BP acquired ARCO in the year 2000 and awarded the 3-D flexible IVE developed by ARCO (beginning in 1990) to the University of Colorado, CU, the winner in a competition among 6 Universities. CU then hired Dr. G. Dorn, the leader of the ARCO team as Center Director, and the other experts to apply 3-D immersive visualization to aerospace and to other University Research fields, while continuing research on surface interpretation of seismic data and 3-D volumes. This paper recounts further progress and outlines plans in Aerospace applications at Lockheed Martin and CU. 相似文献
4.
Nathan Reiland Aaron J. Rosengren Renu Malhotra Claudio Bombardelli 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(11):3755-3774
We aim to provide satellite operators and researchers with an efficient means for evaluating and mitigating collision risk during the design process of mega-constellations. We first introduce a novel algorithm for conjunction prediction that relies on large-scale numerical simulations and uses a sequence of filters to greatly reduce its computational expense. We then use this brute-force algorithm to establish baselines of endogenous (intra-constellation), or self-induced, conjunction events for the FCC-reported designs of the OneWeb LEO and SpaceX Starlink mega-constellations. We demonstrate how these deterministic results can be used to validate more computationally efficient, stochastic techniques for close-encounter prediction by adopting a new probabilistic approach from Solar-System dynamics as a simple test case. Finally, we show how our methodology can be applied during the design phase of large constellations by investigating Minimum Space Occupancy (MiSO) orbits, a generalization of classical frozen orbits that holistically account for the perturbed-Keplerian dynamics of the Earth-satellite-Moon-Sun system. The results indicate that the adoption of MiSO orbital configurations of the proposed mega-constellations can significantly reduce the risk of endogenous collisions with nearly indistinguishable adjustments to the nominal orbital elements of the constellation satellites. 相似文献
5.
Bozdağ Ebru Ruan Youyi Metthez Nathan Khan Amir Leng Kuangdai van Driel Martin Wieczorek Mark Rivoldini Attilio Larmat Carène S. Giardini Domenico Tromp Jeroen Lognonné Philippe Banerdt Bruce W. 《Space Science Reviews》2017,211(1-4):571-594
Space Science Reviews - We present global and regional synthetic seismograms computed for 1D and 3D Mars models based on the spectral-element method. For global simulations, we implemented a... 相似文献
6.
Nathan Netzer 《Space Science Reviews》1993,66(1-4):225-230
VX-Sagittarii is a red supergiant with a superwind which is observed in several maser lines. They provide an evidence that the outflow velocity keeps growing considerably at large distance from the star. It is argued that this phenomenon can be explained by stellar evolutionary effects.As a rule, the outflow velocity for late type stars correlates with the mass loss rate and from that it is suggested that the mass loss rate was higher in the past and is decreasing now. The mass of VX Sagittarii can be estimated on this basis and is about 40–50M
相似文献
7.
Fairén AG Davila AF Lim D Bramall N Bonaccorsi R Zavaleta J Uceda ER Stoker C Wierzchos J Dohm JM Amils R Andersen D McKay CP 《Astrobiology》2010,10(8):821-843
Mars has undergone three main climatic stages throughout its geological history, beginning with a water-rich epoch, followed by a cold and semi-arid era, and transitioning into present-day arid and very cold desert conditions. These global climatic eras also represent three different stages of planetary habitability: an early, potentially habitable stage when the basic requisites for life as we know it were present (liquid water and energy); an intermediate extreme stage, when liquid solutions became scarce or very challenging for life; and the most recent stage during which conditions on the surface have been largely uninhabitable, except perhaps in some isolated niches. Our understanding of the evolution of Mars is now sufficient to assign specific terrestrial environments to each of these periods. Through the study of Mars terrestrial analogues, we have assessed and constrained the habitability conditions for each of these stages, the geochemistry of the surface, and the likelihood for the preservation of organic and inorganic biosignatures. The study of these analog environments provides important information to better understand past and current mission results as well as to support the design and selection of instruments and the planning for future exploratory missions to Mars. 相似文献
8.
Cellular mobile telephone systems are rapidly going into service throughout the Continental United States. They are being installed in a large variety of vehicles both of domestic and of foreign manufacture. In this paper we discuss the physical, climatic, and electronic environments which cellular telephones may expect to encounter in nationwide service. We also discuss procedures used to evaluate the ability of a cellular phone to operate without failure in these environments and to avoid interfering with the increasingly complex vehicular electronic systems. 相似文献
9.
Edwards Christopher S. Christensen Philip R. Mehall Greg L. Anwar Saadat Tunaiji Eman Al Badri Khalid Bowles Heather Chase Stillman Farkas Zoltan Fisher Tara Janiczek John Kubik Ian Harris-Laurila Kelly Holmes Andrew Lazbin Igor Madril Edgar McAdam Mark Miner Mark O’Donnell William Ortiz Carlos Pelham Daniel Patel Mehul Powell Kathryn Shamordola Ken Tourville Tom Smith Michael D. Smith Nathan Woodward Rob Weintraub Aaron Reed Heather Pilinski Emily B. 《Space Science Reviews》2021,217(7):1-37
Space Science Reviews - Modern observatories have revealed the ubiquitous presence of magnetohydrodynamic waves in the solar corona. The propagating waves (in contrast to the standing waves) are... 相似文献
10.