首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
航空   12篇
航天技术   3篇
综合类   1篇
航天   1篇
  2018年   1篇
  2017年   7篇
  2013年   2篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  1998年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
A numerical study on two challenging mixed-integer non-linear programming (MINLP) space applications and their optimization with MIDACO, a recently developed general purpose optimization software, is presented. These applications are the optimal control of the ascent of a multiple-stage space launch vehicle and the space mission trajectory design from Earth to Jupiter using multiple gravity assists. Additionally, an NLP aerospace application, the optimal control of an F8 aircraft manoeuvre, is discussed and solved. In order to enhance the optimization performance of MIDACO a hybridization technique, coupling MIDACO with an SQP algorithm, is presented for two of these three applications. The numerical results show, that the applications can be solved to their best known solution (or even new best solution) in a reasonable time by the considered approach. Since using the concept of MINLP is still a novelty in the field of (aero)space engineering, the demonstrated capabilities are seen as very promising.  相似文献   
2.
The HP3 instrument on the InSight lander mission will measure subsurface temperatures and thermal conductivities from which heat flow in the upper few meters of the regolith at the landing site will be calculated. The parameter to be determined is steady-state conductive heat flow, but temperatures may have transient perturbations resulting from surface temperature changes and there could be a component of thermal convection associated with heat transport by vertical flow of atmospheric gases over the depth interval of measurement. The experiment is designed so that it should penetrate to a depth below which surface temperature perturbations are smaller than the required measurement precision by the time the measurements are made. However, if the measurements are delayed after landing, and/or the probe does not penetrate to the desired depth, corrections may be necessary for the transient perturbations. Thermal convection is calculated to be negligible, but these calculations are based on unknown physical properties of the Mars regolith. The effects of thermal convection should be apparent at shallow depths where transient thermal perturbations would be observed to deviate from conductive theory. These calculations were required during proposal review and their probability of predicting a successful measurement a prerequisite for mission approval. However, their uncertainties lies in unmeasured physical parameters of the Mars regolith.  相似文献   
3.
4.
We discuss the current theoretical understanding of the large scale flows observed in the solar convection zone, namely the differential rotation and meridional circulation. Based on multi-D numerical simulations we describe which physical processes are at the origin of these large scale flows, how they are maintained and what sets their unique profiles. We also discuss how dynamo generated magnetic field may influence such a delicate dynamical balance and lead to a temporal modulation of the amplitude and profiles of the solar large scale flows.  相似文献   
5.
6.
The 2018 InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) Mission has the mission goal of providing insitu data for the first measurement of the geothermal heat flow of Mars. The Heat Flow and Physical Properties Package (HP3) will take thermal conductivity and thermal gradient measurements to approximately 5 m depth. By necessity, this measurement will be made within a few meters of the lander. This means that thermal perturbations from the lander will modify local surface and subsurface temperature measurements. For HP3’s sensitive thermal gradient measurements, this spacecraft influence will be important to model and parameterize. Here we present a basic 3D model of thermal effects of the lander on its surroundings. Though lander perturbations significantly alter subsurface temperatures, a successful thermal gradient measurement will be possible in all thermal conditions by proper (\(>3~\mbox{m}\) depth) placement of the heat flow probe.  相似文献   
7.
研究了建立机翼有限元模型的自动化。用行列法标识结构的部件(肋、梁、蒙皮、立柱),并用简单明了的表格界面来输入所有部件的几何、网格密度、材料、载荷、边界条件等参数。设计并用PCL(PATRANcommandlanguageunderPATRAN6.0)编制了相应的自动化建立整个机翼有限元模型的用户化程序模块。作为算例建立了VFW614机翼的有限元模型并用NASTRAN68进行了计算。结果表明,本方法有效和高效。  相似文献   
8.
In radiation protection, the Q-factor has been defined to describe the biological effectiveness of the energy deposition or absorbed dose to humans in the mixed radiation fields at aviation altitudes. This particular radiation field is generated by the interactions of primary cosmic particles with the atoms of the constituents of the Earth’s atmosphere. Thus the intensity, characterized by the ambient dose equivalent rate H∗(10), depends on the flight altitude and the energy spectra of the particles, mainly protons and alpha particles, impinging on the atmosphere. These charged cosmic projectiles are deflected both by the interplanetary and the Earth’s magnetic field such that the corresponding energy spectra are modulated by these fields. The solar minimum is a time period of particular interest since the interplanetary magnetic field is weakest within the 11-year solar cycle and the dose rates at aviation altitudes reach their maximum due to the reduced shielding of galactic cosmic radiation. For this reason, the German Aerospace Center (DLR) performed repeated dosimetric on-board measurements in cooperation with several German airlines during the past solar minimum from March 2006 to August 2008. The Q-factors measured with a TEPC range from 1.98 at the equator to 2.60 in the polar region.  相似文献   
9.
Upcoming space missions utilizing hyperspectral or other high-resolution sensors will generate a vast amount of data in orbit. The average communication duration between a spacecraft in low Earth orbit (LEO) to a dedicated ground station is short and in addition, due to the high amount of data to be transferred at link times, a high-performance communication system on board of the satellite is indispensable.A solution that provides longer acquisition times with the ground station is to employ a high data-rate inter-satellite link to a geostationary relay satellite, which requires a flat, compact, steerable, light-weight yet robust antenna. Such an antenna system (antenna module plus pointing module) was developed for S-Band at the Institute of Astronautics (Technische Universität München), in cooperation with German space companies, research institutes and the German Aerospace Center (DLR). Its successful operation via the geostationary relay satellite Artemis was demonstrated in cooperation with ESA in 2007.This paper describes the evaluation of an antenna system in the Ka-Band, as a successor to be developed in the next two years for high data rates and the various applications of such an antenna system.  相似文献   
10.
The NASA InSight mission will provide an opportunity for soil investigations using the penetration data of the heat flow probe built by the German Aerospace Center DLR. The Heat flow and Physical Properties Probe (HP3) will penetrate 3 to 5 meter into the Martian subsurface to investigate the planetary heat flow. The measurement of the penetration rate during the insertion of the HP3 will be used to determine the physical properties of the soil at the landing site. For this purpose, numerical simulations of the penetration process were performed to get a better understanding of the soil properties influencing the penetration performance of HP3. A pile driving model has been developed considering all masses of the hammering mechanism of HP3. By cumulative application of individual stroke cycles it is now able to describe the penetration of the Mole into the Martian soil as a function of time, assuming that the soil parameters of the material through which it penetrates are known. We are using calibrated materials similar to those expected to be encountered by the InSight/HP3 Mole when it will be operated on the surface of Mars after the landing of the InSight spacecraft. We consider various possible scenarios, among them a more or less homogeneous material down to a depth of 3–5 m as well as a layered ground, consisting of layers with different soil parameters. Finally we describe some experimental tests performed with the latest prototype of the InSight Mole at DLR Bremen and compare the measured penetration performance in sand with our modeling results. Furthermore, results from a 3D DEM simulation are presented to get a better understanding of the soil response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号