首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
航空   1篇
航天技术   5篇
航天   1篇
  2011年   1篇
  2010年   1篇
  2002年   1篇
  1985年   3篇
  1984年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Space Telescope (ST) observations of Jupiter and Saturn will offer a unique opportunity for monitoring their changing meteorological characteristics. They will provide higher spatial and temporal resolution for composition and vertical structure studies than have been available to date. We have simulated the planetary camera observations of Jupiter and Saturn by Voyager images of the appropriate spatial scale. With this data set we have investigated the meteorological properties of these atmospheres which can be studied at these scales. In addition we have considered the advances obtainable with the high resolution spectrometer on ST compared with observations from ground-based and other Earth-orbiting satellites. These studies will provide insight into the scientific gain and possible problems in the use of ST for planetary studies.  相似文献   
2.
Zarnecki  J.C.  Leese  M.R.  Garry  J.R.C.  Ghafoor  N.  Hathi  B. 《Space Science Reviews》2002,104(1-4):593-611
The design and performance of the Surface Science Package (SSP) on the Huygens probe are discussed. This instrument consists of nine separate sensors that are designed to measure a wide range of physical properties of Titan's lower atmosphere, surface, and sub-surface. By measuring a number of physical properties of the surface it is expected that the SSP will be able to constrain the inferred composition and structure of the moon's near-surface environment. Although the SSP is primarily designed to sense properties of the surface, some of its sensors will also make measurements of the atmosphere along the probe's entry path and will complement the data gathered by other experiments on the Huygens probe. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
3.
In this paper we describe the Interactive Planetary Image Processing System (IPIPS) which was developed originally for studies of planetary meteorology and oceanography and is now used to support remote sensing studies in all areas of earth sciences. The computing machinery, the image display systems and the programming that unites them into an interactive research and analysis tool are described. We present some results from our recent research activities and also outline the role of IPIPS in the Imperial College and University of London teaching programme.  相似文献   
4.
In this paper we summarise the current understanding of Martian condensate and dust clouds. The paper is particularly concerned with the spatial, temporal and seasonal characteristics of the clouds. The condensate clouds are composed of water and ice particles and occasionally CO2 particles. Dust clouds are composed of material from the surface and redistributed over the planet through the weather systems. The apparent lack of annual reproductivity of these dust storms forms a major unresolved problem. We discuss in this paper the types of observations needed in future space missions, in particular the requirements for the NASA Mars Geochemical Climatology Orbiter Mission planned for the end of this decade.  相似文献   
5.
For the evaluation of organ dose and dose equivalent of astronauts on space shuttle and the International Space Station (ISS) missions, the CAMERA models of CAM (Computerized Anatomical Male) and CAF (Computerized Anatomical Female) of human tissue shielding have been implemented and used in radiation transport model calculations at NASA. One of new human geometry models to meet the “reference person” of International Commission on Radiological Protection (ICRP) is based on detailed Voxel (volumetric and pixel) phantom models denoted for male and female as MAX (Male Adult voXel) and FAX (Female Adult voXel), respectively. We compared the CAM model predictions of organ doses to those of MAX model, since the MAX model represents the male adult body with much higher fidelity than the CAM model currently used at NASA. Directional body-shielding mass was evaluated for over 1500 target points of MAX for specified organs considered to be sensitive to the induction of stochastic effects. Radiation exposures to solar particle event (SPE), trapped protons, and galactic cosmic ray (GCR) were assessed at the specific sites in the MAX phantom by coupling space radiation transport models with the relevant body-shielding mass. The development of multiple-point body-shielding distributions at each organ made it possible to estimate the mean and variance of organ doses at the specific organ. For the estimate of doses to the blood forming organs (BFOs), data on active marrow distributions in adult were used to weight the bone marrow sites over the human body. The discrete number of target points of MAX organs resulted in a reduced organ dose and dose equivalent compared to the results of CAM organs especially for SPE, and should be further investigated. Differences of effective doses between the two approaches were found to be small (<5%) for GCR.  相似文献   
6.
We present the results of a study of anomalies, which are defined as differences of seasonal means from the data set seasonal means, in the Earth's radiation budget from the analysis of nine years of ten day mean observations derived from the NOAA polar orbiter satellites for the period, 1974–1983. We estimate that the standard deviation in the outgoing longwave flux for this period is less than 12 Wm?2 and typically 7 Wm?2. The results show that there are several geographical areas for which the standard deviation is in excess of 20 Wm?2; in such regions the radiation budget anomalies exceeded these due to natural atmospheric variability. In this paper we discuss the relationship of these anomalies with climatic change.  相似文献   
7.
OLTARIS (On-Line Tool for the Assessment of Radiation In Space) is a space radiation analysis tool available on the World Wide Web. It can be used to study the effects of space radiation for various spacecraft and mission scenarios involving humans and electronics. The transport is based on the HZETRN transport code and the input nuclear physics model is NUCFRG. This paper describes the tools behind the web interface and the types of inputs required to obtain results. Typical inputs are mission parameters and slab definitions or vehicle thickness distributions. Radiation environments can be chosen by the user. This paper describes these inputs as well as the output response functions including dose, dose equivalent, whole body effective dose equivalent, LET spectra and detector response models.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号