排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Felix Bissig Amir Khan Martin van Driel Simon C. Stähler Domenico Giardini Mark Panning Mélanie Drilleau Philippe Lognonné Tamara V. Gudkova Vladimir N. Zharkov Ana-Catalina Plesa William B. Banerdt 《Space Science Reviews》2018,214(8):114
The InSight mission to Mars is well underway and will be the first mission to acquire seismic data from a planet other than Earth. In order to maximise the science return of the InSight data, a multifaceted approach will be needed that seeks to investigate the seismic data from a series of different frequency windows, including body waves, surface waves, and normal modes. Here, we present a methodology based on globally-averaged models that employs the long-period information encoded in the seismic data by looking for fundamental-mode spheroidal oscillations. From a preliminary analysis of the expected signal-to-noise ratio, we find that normal modes should be detectable during nighttime in the frequency range 5–15 mHz. For improved picking of (fundamental) normal modes, we show first that those are equally spaced between 5–15 mHz and then show how this spectral spacing, obtained through autocorrelation of the Fourier-transformed time series can be further employed to select normal mode peaks more consistently. Based on this set of normal-mode spectral frequencies, we proceed to show how this data set can be inverted for globally-averaged models of interior structure (to a depth of \(\sim 250~\mbox{km}\)), while simultaneously using the resultant synthetically-approximated normal mode peaks to verify the initial peak selection. This procedure can be applied iteratively to produce a “cleaned-up” set of spectral peaks that are ultimately inverted for a “final” interior-structure model. To investigate the effect of three-dimensional (3D) structure on normal mode spectra, we constructed a 3D model of Mars that includes variations in surface and Moho topography and lateral variations in mantle structure and employed this model to compute full 3D waveforms. The resultant time series are converted to spectra and the inter-station variation hereof is compared to the variation in spectra computed using different 1D models. The comparison shows that 3D effects are less significant than the variation incurred by the difference in radial models, which suggests that our 1D approach represents an adequate approximation of the global average structure of Mars. 相似文献
2.
Clinton J. Giardini D. Böse M. Ceylan S. van Driel M. Euchner F. Garcia R. F. Kedar S. Khan A. Stähler S. C. Banerdt B. Lognonne P. Beucler E. Daubar I. Drilleau M. Golombek M. Kawamura T. Knapmeyer M. Knapmeyer-Endrun B. Mimoun D. Mocquet A. Panning M. Perrin C. Teanby N. A. 《Space Science Reviews》2018,214(8):1-51
Space Science Reviews - In recent decades, volcanic and cryovolcanic activity on moons within the Solar System has been recognised as an important source of cosmic dust. Two moons, Jupiter’s... 相似文献
3.
Panning Mark P. Lognonné Philippe Bruce Banerdt W. Garcia Raphaël Golombek Matthew Kedar Sharon Knapmeyer-Endrun Brigitte Mocquet Antoine Teanby Nick A. Tromp Jeroen Weber Renee Beucler Eric Blanchette-Guertin Jean-Francois Bozdağ Ebru Drilleau Mélanie Gudkova Tamara Hempel Stefanie Khan Amir Lekić Vedran Murdoch Naomi Plesa Ana-Catalina Rivoldini Atillio Schmerr Nicholas Ruan Youyi Verhoeven Olivier Gao Chao Christensen Ulrich Clinton John Dehant Veronique Giardini Domenico Mimoun David Thomas Pike W. Smrekar Sue Wieczorek Mark Knapmeyer Martin Wookey James 《Space Science Reviews》2017,211(1-4):611-650
Space Science Reviews - The InSight lander will deliver geophysical instruments to Mars in 2018, including seismometers installed directly on the surface (Seismic Experiment for Interior Structure,... 相似文献
1