排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
2.
航班的滑出时间是描述机场场面运行状态和周转效率的关键指标,其不确定性会降低航班到达目的机场的可预见性,进而带来航空资源的低效利用和燃油耗费问题。研究了一种基于强化学习的航班滑出时间预测模型。从交通状态和时序特性方面分析并提取影响滑出时间的主要特征集;利用马尔科夫决策过程建模滑出时间预测问题,并通过强化学习算法进行模型训练和测试。在真实机场场面运行数据中进行的实验表明,所提出方法不仅能够准确预测单个航班的滑出时间,还能够捕捉机场场面整体的滑行态势的变化情况,为智慧机场的建设提供新思路。 相似文献
3.
为准确感知机场场面运行环境,提出基于度量学习的交通态势弱监督评估方法。根据机场场面航空器的时空分布类型,从交通流量、起降队列、资源需求等视角构建交通态势指标体系;借鉴度量学习范式,利用预先定义的相似集和不相似集自动学习态势样本之间的距离度量;在此基础上,采用K均值算法实现弱监督条件下交通态势的等级划分。以上海浦东国际机场实际运行数据为例,分析并验证所提方法的有效性。实验结果表明:起始时刻离场瞬时流量、离场累计流量、离场跑道队列长度及进场累计流量的距离系数大于0.5,对场面态势影响较大;与基于欧式距离的K均值算法相比,度量学习将最优轮廓系数提升了33.3%,得到符合预期语义的聚类结果;此外,机场的平均滑行时间越长、跑道配置越复杂,其场面交通态势等级越高。 相似文献
1