排序方式: 共有26条查询结果,搜索用时 0 毫秒
1.
高超声速弹性飞行器振动模态自适应抑制技术 总被引:1,自引:0,他引:1
为保证超燃冲压发动机的良好进气,需要对高超声速飞行器进行精细姿态控制。针对高超声速飞行器特有的气动参数和结构模态参数不确定性问题,基于自适应模态抑制思想,设计了一种精细姿态控制系统,包括观测刚体模态状态信息的鲁棒H∞滤波器,提高跟踪性能的LQR刚体控制器,实时辨识弯曲模态频率的结构模态观测器和结构滤波器四部分。仿真表明,设计的控制系统在气动参数±20%,模态频率±30%的随机摄动下仍能够很好地跟踪刚体攻角,抑制弹性攻角,保证超燃冲压发动机进气道±0.6度的攻角控制精度,满足精细姿态控制的要求。 相似文献
2.
空间绳系机器人抓捕后复合体姿态协调控制 总被引:1,自引:0,他引:1
针对空间绳系机器人对目标抓捕后的复合体姿态稳定控制问题进行了研究.首先,对复合体进行动力学建模,并对其动力学特性进行了分析;然后,考虑复合体的特点、空间绳系机器人燃料有限以及自身姿态控制力的限制,分别设计了系绳主动拉力与推力器推力协调控制器和基于滑模变结构的全推力控制器,并设计了其切换条件,利用两种控制器切换对姿态进行稳定控制;最后,利用仿真实验验证了所提方法的正确性.仿真结果表明,系绳拉力和推力器协调控制方法能够实现对姿态的稳定控制,并且有效地节省姿态控制过程中的燃料消耗. 相似文献
3.
提出了一种新型辐射开环空间绳系机器人编队系统,其在编队稳定性、任务灵活性及燃料消耗等方面具有明显的优势。针对辐射开环空间绳系机器人编队系统自旋运动过程中的构型误差控制问题,首先建立了编队系统的自旋动力学模型;然后分析了空间绳系机器人的绳系拉力和空间平台的自旋扭矩对编队系统自旋运动中出现的构型误差的控制能力;设计了一种依靠空间绳系机器人绳系拉力和空间平台自旋扭矩作为控制量,对构型误差进行控制的协调控制方法;最后通过数字仿真进行了校验和分析。仿真结果表明:设计的协调控制方法能够明显改善编队系统自旋运动中构型误差的控制效果。 相似文献
4.
5.
为实现失效航天器寿命延长的目的,采用接管控制技术接管失效航天器姿态控制系统。针对姿态机动接管控制中,失效卫星参数不确定和推力器构型矩阵突变的问题,提出一种基于控制系统重构的失效航天器姿态机动接管控制方法。首先采用指令滤波backstepping控制来重构姿态机动接管控制律,并利用Lyapunov方法分析系统稳定性;然后对推力器构型矩阵进行重构;最后考虑燃料消耗和控制输入受限问题,通过基于约束最优二次规划的动态控制分配算法对推力器推力进行控制重分配。采用本文方法实现了对燃料耗尽航天器和部分执行机构失效航天器的姿态机动接管控制。数值仿真证明了该方法的有效性。 相似文献
6.
针对空间绳系机器人中距离逼近过程最优轨迹规划问题,提出了基于速度增量的多目标逼近轨迹优化方法,优化指标为总速度增量及逼近时间。首先建立逼近过程相对动力学模型及最优逼近轨迹优化模型,然后利用改进型非劣分类遗传算法得到相对逼近距离1.5 km内逼近轨迹的Pareto最优解。仿真结果表明,该方法可以揭示空间绳系机器人逼近距离1.5 km内逼近时间、燃料消耗、相对目标的面内视界角及速度增量次数之间的相互关系,能满足针对不同任务需求提供相应最优轨迹的要求。 相似文献
7.
空间绳系机器人逼近目标协调控制方法 总被引:1,自引:0,他引:1
为了节省空间绳系机器人的末端执行装置在逼近目标卫星过程中推力器所使用的燃料,本文提出一种利用推力器、反作用轮及空间系绳的协调控制方法。首先利用二次型最优控制器(LQR)算法计算出末端执行装置逼近目标所需的理想轨道控制力,然后利用模拟退火算法将所需轨道控制力优化分配到推力器及空间系绳,同时利用时间延迟算法通过反作用轮补偿空间系绳产生的姿态干扰力矩。仿真结果表明,利用该协调控制方法能显著节省末端执行装置上推力器的燃料消耗,有效抑制空间系绳协调控制力产生的姿态干扰,使末端执行装置保持相对稳定的姿态。 相似文献
8.
弹性高超声速飞行器建模及精细姿态控制 总被引:1,自引:0,他引:1
为保证超燃冲压发动机的良好进气,需要对高超声速飞行器进行精细姿态控制,但弹性振动问题极大影响其精细姿态控制精度。以高超声速飞行器的纵向通道为例,分析弹性振动问题对飞行控制系统的影响,建立面向控制的弹性高超声速飞行器数学模型,考虑气动参数和模态参数的大范围摄动,采用主动控制策略,基于鲁棒H∞理论和LQR理论设计精细姿态控制系统。大量仿真表明:在考虑测量噪声、舵机非线性、参数大范围摄动的情况下,控制系统能够很好地跟踪刚体攻角,抑制弹性攻角,并保证进气口当地攻角±0.4度的控制精度,满足高超声速飞行器精细姿态控制的要求。 相似文献
9.
在自主空中加油任务中,针对受油无人机(UAV)与加油机对接后形成的软管约束下的编队跟踪控制问题,提出一种基于领航-跟随的加油编队跟踪控制方法。首先,建立软管约束下加油编队运动学/动力学模型。然后设计非奇异终端滑模编队快速收敛控制器,以满足软管约束下加油编队的快速收敛需求;再考虑复杂气流和软管未知扰动,结合扩张状态观测器和PI型动态逆控制,设计无人机轨迹跟踪控制器,并基于Lyapunov稳定性分析证明闭环系统可实现有限时间的快速稳定。最后,通过数值仿真来验证所设计加油编队控制方法的有效性。 相似文献
10.