排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
基于RVM回归误差补偿的航空发动机分布式控制系统多步预测控制 总被引:1,自引:0,他引:1
针对具有随机有界双侧时延的航空发动机分布式控制系统,提出了一种基于多步预测和关联向量机(RVM)回归误差补偿的控制方案.首先建立航空发动机分布式控制系统(DCS)的神经网络非线性自回归滑动平均(NARMA)模型,利用当前的系统输出和控制量对N步之后的系统输出进行预测;其次用改进的RVM回归多步预测算法估计NARMA模型的的预测误差,并对预测结果进行误差补偿;最后利用补偿之后的预测值和设定值对控制参数进行滚动优化,设计系统的神经网络逆控制器实现系统的自适应控制.仿真结果证明该控制策略能够避免随机有界双侧时延对控制系统的影响,实现对设定值的稳定跟踪,且控制器具有较好的实时性和鲁棒性.低压转子转速阶跃响应的稳态绝对误差小于0.04%,响应时间小于0.3s. 相似文献
2.
为解决应用传统遗传算法优化的随机共振(Stochastic resonance, SR)方法易出现的计算发散问题,提出一种基于稳定约束的自适应随机共振方法。对求解随机共振的Langevin方程进行了稳定性分析,得到了考虑输入信号的条件下,使系统输出稳定的频率压缩比R的约束公式。将该稳定性条件应用于遗传算法参数的寻优过程,将原来的无约束最优化问题转化为有约束最优化问题。将改进后的自适应随机共振方法应用于转子早期碰摩故障检测,分析结果表明,该方法确保了系统输出的稳定性,寻优过程中的频率压缩比R的取值均在约束值以下,避免了计算发散现象,实现了在强噪声条件下对微弱故障信号的提取。 相似文献
3.
为减小航空发动机多工况的工作特性和分布式控制系统非线性网络环境对故障诊断系统的影响,针对航空发动机分布式控制系统,提出一种基于T-S模糊KPCA模型的传感器故障诊断方法。首先采用C均值模糊聚类法,以油门杆角度为样本标签,对样本空间进行模糊分类,再通过模糊相似矩阵剔除各样本子空间的野值点;其次建立标称工况的KPCA模型,并利用训练样本对非标称工况的隶属度函数进行辨识,得到全工况T-S模糊KPCA模型;最后利用统计量T 2和SPE对传感器故障进行检测,并采用数据重构方法对故障传感器进行隔离定位。仿真结果表明该方法对发动机的任意稳定工况具有自适应能力,能够在非线性网络环境下对正常样本和故障样本保持较低的虚警率和漏报率。当多个传感器同时发生故障时,能够准确找到故障源,实现对故障传感器的隔离。 相似文献
1