首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
带有SiC涂层的C/C复合材料的氧化行为   总被引:1,自引:0,他引:1  
采用包埋法在C/C复合材料表面制备了SiC高温防氧化涂层。利用SEM和XRD等方法对涂层的微观形貌和晶相组成进行了观察与分析,并对带涂层试样在室温~1 500℃范围内的氧化行为进行了研究。结果表明,涂层主要由β-SiC和少量的游离Si组成,涂层表面有裂纹存在,涂层与C/C复合材料基体结合良好,呈现犬牙状结合。在室温~1 500℃之间,带SiC涂层C/C复合材料的氧化行为可分为4个阶段,涂层在高温区具有较好的防氧化性能。  相似文献   

2.
钨合金作为轨姿控液体火箭发动机推力室身部的主要结构材料,在工作环境中易发生氧化粉化,必须在合金表面涂覆高温抗氧化涂层。利用涂覆及真空烧结复合工艺在铌钨合金表面制备高温抗氧化涂层,研究硅化物涂层对铌钨合金的热防护行为,包括涂层成型过程、高温抗氧化行为、高温抗热震行为及试车热冲刷行为等,试验结果为:涂层在1700℃下的氧化寿命为11±0.78 h,1800℃下的氧化寿命为5±0.46 h,1650℃~室温的水冷热震循环次数为124±9次,1600~800℃下的空冷热震循环次数为3410±124次,并且在热试车考核中涂层通过了长程10000 s的考核,分析硅化物涂层的性能和失效机制,总结了硅化物涂层的热防护机理,研究的新型硅化物涂层在高温条件下具有较好的性能。  相似文献   

3.
针对双组元姿轨控发动机推力室铌铪合金材料的高温抗氧化防护进行了涂层工艺技术研究,在合金表面制备了Si-Cr-Ti体系硅化物涂层,通过真空烧结、高温抗氧化和热震试验、显微组织分析,对涂层的成型过程、形貌、组织结构、性能和防护机理进行了分析。结果表明,通过真空烧结形成了过渡/结合层、致密层和疏松层结构的硅化物涂层,过渡层分布均匀,致密层厚实,疏松层相对较薄且成型较好,经过两代工艺优化,涂层在1 700℃下的氧化寿命达到7 h,1 400~8 00℃空冷热震循环寿命达到4 500次,在热试车考核过程中涂层最高工作温度可达到1 350℃,试后涂层依然具有一定厚度的致密层,具有高温防护作用,满足型号对涂层性能的要求。  相似文献   

4.
为了提高C/SiC复合材料耐高温性能,采用泥浆浸渍裂解与真空化学气相沉积(CVD)在材料表面制备了SiC/CVD SiC复合涂层,通过XRD、SEM分析了涂层组成与结构;研究了复合涂层的高温抗氧化(700~1 500℃)和抗热震性能。结果表明,泥浆浸渍法制备的SiC涂层具有一定的封孔效果,可使材料开孔率下降,但高温抗氧化效果并不佳,1 200℃氧化10 min后材料弯曲强度保留率下降明显仅有86%。CVD SiC涂层结构致密,与SiC封孔涂层结合较好,在700~1 500℃具有较好的抗氧化效果,随着氧化温度的升高,氧化后涂层完好,表面O元素逐渐增加,材料失重率缓慢增加但不大于0.5%,且材料性能并未下降。涂层材料在1 200℃-10 min短时热震5次后材料弯曲强度保留率仍有95%以上,且未出现开裂、剥落等热震损伤。在1 200℃-30 min长时热震10次后,涂层材料基本被完全氧化,材料失去保护作用,弯曲强度下降至90%左右。  相似文献   

5.
大气等离子喷涂纳米ZrO2涂层工艺与性能研究   总被引:4,自引:0,他引:4  
以结合强度为测试指标进行正交试验,优化出纳米ZrO2热障涂层喷涂的最佳工艺参数,并对该涂层的结合强度、抗热震性能及隔热性能进行了试验研究。试验结果表明,经优化工艺喷涂的涂层结合强度可达33 MPa;抗热震性能好,1050℃水冷试验中,涂层可经历22次左右的热震循环;隔热效果明显,火焰与涂层表面以及涂层表面和试样背面随着火焰温度不同,分别具有300~600℃和100~200℃左右的温差。  相似文献   

6.
陶瓷隔热瓦表面SiO2-B2O3-MoSi2-SiB4涂层的制备与性能研究   总被引:2,自引:0,他引:2  
采用料浆涂覆烧结法在高温刚性隔热瓦表面制备了一种新的涂层,并利用X射线衍射仪、X射线光电子能谱仪和扫描电镜对涂层的相组成和微观结构进行了分析,对涂层在波长2.5~20μm范围内不同温度下的辐射率进行了测试。实验结果表明,涂层厚度约为200μm,涂层具有双层结构,中间过渡层为多孔结构,外表面层为致密的玻璃层。在800℃时涂层总的光谱发射率达到0.92。  相似文献   

7.
炭/炭复合材料防氧化涂层研究进展   总被引:1,自引:0,他引:1  
介绍了近两年国内外开发的几种C/C复合材料高性能抗氧化涂层的微观结构和高温氧化行为,表明SiC-Al2O3-莫来石、SiC晶须增韧陶瓷、硅酸钇等涂层1500℃静态空气环境下均具有长时间防氧化能力,部分涂层还具有优良的抗热震性能。其中采用原位形成法制备的硅酸钇涂层具有极佳的抗氧化性能,可在1600℃空气中对C/C复合材料有效保护200 h。此外,还介绍了部分涂层的失效机理,并就C/C复合材料抗氧化涂层下一步研究重点提出一些见解。  相似文献   

8.
C/C复合材料难熔金属二硅化物涂层防氧化机理研究   总被引:1,自引:0,他引:1  
采用包埋技术在C/C复合材料表面制备了SiC-WSi2/MoSi2抗氧化涂层,通过恒温氧化试验以及TG-DTG、XRD和SEM等手段对该涂层的显微形貌、成分进行了分析,研究了涂层在1 500℃的抗氧化机理。结果表明,二硅化物的合金化及二硅化物与SiC的复合化提高了涂层的致密性、稳定性,而涂层表面长时间存在的致密的玻璃态SiO2,有效地阻止了氧气向涂层内部的扩散,使涂层表现出优异的高温防氧化能力。  相似文献   

9.
采用溶胶-凝胶法制备了C/SiC刹车材料硼硅玻璃防氧化涂层。用FTIR、XRD、TG-DSC研究了溶胶到玻璃的形成过程,并分析了硼硅玻璃涂层的防氧化性能及抗热震性能。结果表明,所得硼硅玻璃涂层均匀、致密,并与基体结合紧密。在800℃,硼硅玻璃涂层具有优异的防氧化性能,良好的高温稳定性和抗热震性能,尤其具有优良的耐海水侵蚀性能。在800℃氧化10 h,未经海水浸泡的涂层样失重率约为0.33%;经过海水浸泡的涂层样失重率约为2.36%。经50次热震(共氧化10 h)后,涂层保持完好,失重率约为9.79%。  相似文献   

10.
采用原位生成法在C/C复合材料SiC内涂层表面制备了mullite(莫来石)-Si-Al2 O3抗氧化涂层.采用XRD、SEM分析了涂层的物相组成和微观结构,并测试了SiC/mullite-Si-Al2 O3复合涂层的抗氧化性能.结果表明,外涂层主要由mullite、Si和Al2O3三相组成;涂层致密无裂纹;SiC/mullite-Si-Al2 O3复合涂层在1500℃静态空气中等温氧化75 h后,试样失重仅为4.6%,防氧化性能明显优于单一的SiC内涂层.  相似文献   

11.
采用两步包埋法在C/C复合材料表面制备SiC-MoSi2抗氧化复合涂层,通过恒温氧化实验以及X射线衍射分析、扫描电镜观察,研究了包埋粉料中硅钼含量对复合涂层微观结构和高温抗氧化性能的影响。结果表明,随着包埋粉料中硅钼比的减小,涂层的厚度和致密性先增加后减小,硅钼质量比为6∶1时所制备的复合涂层具有较大的厚度和较为致密的结构,且MoSi2含量相对较高,体现出优良的抗氧化和抗热震性能,在1 500℃氧化87.3 h和经过9次1 500℃室温急冷急热后,带有该涂层的C/C试样失重仅为3.22%。穿透性裂纹的形成是长时间氧化后涂层失效的主要原因。  相似文献   

12.
为解决Ti Al基合金在750℃以上的抗高温氧化性能不足的问题,提出了采用溶胶凝胶法在其表面进行低真空制备SiO_2涂层的工艺方法。本文研究了涂膜次数对涂层表面形貌的影响,并对涂层厚度,涂层结合力,热处理后Ti Al基体抗高温氧化性等方面进行了研究,从而确定了低真空制备SiO_2涂层的可行性工艺方案。涂膜次数三层时,在Ti Al表面可以获得良好附着力和致密性高的SiO_2薄膜;在800℃高温氧化测试中,未涂膜试样氧化8h后增重2.333mg/cm2,三层涂膜试样氧化504h氧化增重仅为0.2143mg/cm2且表面没有出现剥落现象,大大提高了基体的抗高温氧化性能。  相似文献   

13.
铌铪合金表面硅化物涂层的高温失效行为分析   总被引:1,自引:0,他引:1  
铌铪合金为轨姿控液体火箭发动机推力室身部主要结构材料,在高温有氧的工作环境中易发生氧化粉化,必须在合金表面涂覆高温抗氧化涂层。通过分析铌铪合金表面硅化物涂层的高温氧化、高温热震、瞬时高温烧蚀和热试车行为,阐述高温条件下的氧化失效行为。试验结果为:涂层1 800℃以下氧化条件下,表面形成致密的二氧化硅氧化膜,使得涂层的氧化寿命大于2 h;1 800℃以上的超高温氧化条件下,高温热冲击作用,涂层内部形成大量的烧蚀型网格结构,表面未形成二氧化硅氧化膜,氧化寿命小于10 s;热试车考核中,涂层满足推力室外壁面温度1 350℃以下的使用工况,抗氧化能力较好,随着氧化温度升高,涂层高温抗氧化能力迅速衰减。  相似文献   

14.
炭/炭复合材料SiC-MoSi2/SiC涂层结构及防氧化性能研究   总被引:1,自引:0,他引:1  
采用包埋法、料浆法与化学气相沉积法相结合制备了防止炭/炭复合材料在高温下氧化的SiC-MoSi2/SiC涂层。借助SEM、EDS及XRD等测试手段对涂层的微观形貌、元素分布和相组成进行了观察与分析。涂层试件的氧化试验结果表明,所制备的SiC-MoSi2/SiC涂层炭/炭复合材料试样经1 500℃氧化20 h后氧化失重率仅为2.8%。涂层的防氧化失效主要是由于涂层中形成穿透性缺陷引起的。  相似文献   

15.
铌铪合金具有较高的高温强度,是轨姿控液体火箭发动机推力室身部的主要结构材料,但在工作环境中易发生氧化“粉化”,必须在合金表面涂覆高温抗氧化涂层.本文主要研究了硅化物涂层对铌铪合金热防护行为,包括涂层的成型过程、高温抗氧化行为及高温抗热震行为等.试验结果为:涂层在1 700℃下的氧化寿命7 h,1 400~800℃的空冷热震循环次数4 700次,表面粗糙度30~60 μm.并对铌铪合金推力室身部涂层热试车情况进行了详细分析研究,对涂层在富氧高温燃气冲刷作用下的工作机理进行研究分析,总结了硅化物涂层的热防护机理,研究的新型硅化物涂层在高温条件下具有较好的性能.  相似文献   

16.
室温固化RT-Ⅲ防热涂层及其应用   总被引:7,自引:0,他引:7  
介绍了RT-Ⅲ防热涂料的性能,并分析了增加研磨工序后,由于填料颗粒度降低给涂层力学性能和隔热效果带来的影响。在特定环境下,经风洞试验,0.5mm厚的防热涂层比无涂层的基材背温降低约200℃左右;目前,该涂料已成功地用于固体火箭发动机外防热和火箭的舵面、舱体的防热。  相似文献   

17.
采用溶胶-凝胶法在石英纤维的表面涂敷Al2O3涂层,用AFM对涂敷后纤维的表面形貌进行了研究,并通过束丝拉伸强度的测试优化了Al2O3涂层热处理工艺条件,着重分析了Al2O3涂层对石英纤维增强甲基硅树脂复合材料界面性能的影响。结果表明,Al2O3涂层在500℃下可有效隔绝石英纤维与树脂基体之间的反应,改善复合材料的界面强度,提高复合材料的层间剪切性能。经400、600℃热处理后的Al2O3涂敷石英纤维增强复合材料的层间剪切强度分别为8.2、5.4 MPa,分别是未涂敷复合材料的3.4倍和2.3倍。  相似文献   

18.
氧化硼含量对C/C复合材料SiC涂层结构和抗氧化性能的影响   总被引:1,自引:0,他引:1  
为了改善涂层和C/C复合材料之间热膨胀系数不匹配的问题,提高涂层在高温下保护C/C复合材料的能力,以氧化硼为添加剂制备了具有楔状结构的C/C复合材料SiC抗氧化涂层,研究了摩尔百分含量分别为0%、2%、5%和10%的氧化硼对SiC涂层组织、结构和抗氧化性能的影响.SEM、XRD及抗氧化实验的测试结果表明,随着氧化硼含量的增加,SiC涂层的厚度和致密度依次增加;涂层中的氧化硼可促使涂层物料充分渗入C/C复合材料基体内;1 500 ℃空气介质氧化试验结果显示,涂层中氧化硼含量为2%的C/C复合材料在氧化5 h后增重0.32%,具有较好的抗氧化性能.  相似文献   

19.
一种新型热防护涂料研究   总被引:14,自引:0,他引:14  
研究了一种用于超音速飞行器的新型热防护涂料。分析了涂层材料应具有的特性,在此基础上对作为基体的有机硅改性环氧树脂的性能进行了研究,并筛选了改进涂层材料力学性能和隔热性能的填料,最后研究了涂层材料的综合性能。研究结果表明,有机硅改性环氧树脂的拉伸强度达到9.38 MPa,断裂伸长率达到16%,热分解温在340℃~640℃;涂层材料具有良好的力学性能、热性能和烧蚀性能,其拉伸强度为7.1MPa,断裂伸长率为1.04%,附着力为498.4 N/cm2,比热容为1.627×103J/(Kg.K),导热系数为0.146 W/m.K,隔热性能参数为0.087kg2/(m4.s),氧-乙炔烧蚀的线烧蚀率为0.194 mm/s,质量烧蚀率为0.0729 g/s。  相似文献   

20.
为获得Ag/Ni@SiO_2/环氧树脂电磁屏蔽涂层的最佳性能,预制了平均粒径为550 nm、磁导率为3.133 2×10~(-5)H/m的二氧化硅镀镍镀银(Ag/Ni@SiO_2)纳米微球,以该微球为填料,环氧树脂为基体,制备了不同含量填料、不同固化温度及固化时间的电磁屏蔽涂层样品,测试其导电性能、导磁性能及电磁屏蔽性能。测试结果表明,在设定固化温度为90℃、固化时间为2 h下,当填料质量分数为65%时,涂层体积电阻率到达渗滤值,当填料质量分数达到70%时,材料内部形成完整导电网络,体积电阻率趋于平缓;最优固化工艺为固化温度110℃,固化时间3 h,填料质量分数达80%的导电涂层材料导涂层的磁导率为9.964×10~(-6)H/m,饱和磁化度为0.020 62 A·m~2/kg,体积电阻率达到0.018 8Ω·cm。涂层在2.25~2.65GHz和6.57~9.99 GHz频段下,传输效能分别为-54.8、-40.6 d B,填料含量大于70%时涂层对电磁波全反射。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号