首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The aim of this paper is to investigate various aspects of the International Reference Ionosphere (IRI) performance in European area and to evaluate its accuracy and efficiency for: long term prediction of the critical frequencies foF2 and the maximum usable frequencies (MUF); using storm-time correction option (ST); the total electron content (TEC) and the maximum observable frequency (MOF) updating. Data of foF2, TEC, MOF are related to 2005. It is obtained that median values of foF2 can be predicted with the mean error σ(med)∼ 0.49 MHz. For median values of MUF absolute σ was 1.39 MHz and relative σr was 8.8%. For instanteneous values estimates are increased to 1.58σ(med) MHz for foF2 and could reach 3.84 MHz for MUF. Using correction ST-option and TEC values provided ∼30% improvement but TEC seems to be more preferable. However, from considered parameters of the IRI updating (ST-factor, TEC, MOF) the best results were demonstrated by MOF. Using the IRI2007 to calculate TEC gives 20–50% improvement of TEC correspondence to experimental values but this improvement is not enough to treat TEC without the IRI model adaptation.  相似文献   

2.
Empirical modeling including empirical model for the total electron content (TEC) is important for the study of the ionosphere and practical applications. In this paper goodness of new Neustrelitz Global Model (then NGM) at low latitudes is studied. The NGM model includes such parameters as the maximal electron density (NmF2) and altitude of the maximum (hmF2). As of today, besides NGM there are several empirical models for NmF2 and hmF2. Therefore, a comparison of these parameters of the NGM model, not only with the experimental data, but also with two versions of the International Reference Ionosphere (the IRI model): IRI2001 and IRI-Plas would be instructive. Because the NGM model incorporates special factor describing the equatorial anomaly, the comparison in lower latitude areas is particularly interesting. As one can see from the presented example of the data from low latitude stations located in the northern and southern hemispheres near the Greenwich meridian, the NGM model may have certain advantages over the IRI model versions. In particular, NGM TEC is preferable regardless of solar activity level while NGM NmF2 is only preferable under high solar activity conditions. Next, NGM equivalent slab thickness of the ionosphere: τ(NGM) = TEC(NGM)/NmF2(NGM) has been calculated and tested to answer the question whether τ(NGM) can be used as a proxy of the slab thickness of the ionosphere for an empirical modeling. The answer is positive for the near equatorial stations and periods of high solar activity, and under such conditions predicted τ(NGM) can be used for deriving NmF2 from the experimental values of TEC(CODE) in real time.  相似文献   

3.
One of the methods to adapt the International Reference Ionosphere model to real time conditions is to use instantaneous values of the critical frequency of the ionosphere foF2. It is shown that there can be large discrepancies between model and experimental values of the total electron content TEC after this adaptation. Improvement can be provided by the use of an empirical model of the ionospheric slab thickness τ. This conclusion is based on analysis of contributions of various correction factors connected with foF2 and τ into discrepancies between model and experimental values of TEC.  相似文献   

4.
Analysis of a long-time series of hourly median characteristics of the ionospheric plasma at two mid-latitude locations in the Northern and Southern hemisphere, Juliusruh (54.6N; 13.4E) and Hobart (42.9S; 147.3E), reveals patterns of their synchronous and independent variability. We studied timelines of GPS vTEC, ionogram-derived F2-layer peak electron density NmF2, ionospheric equivalent slab thickness τ, and their ratios at two locations during the complete 23rd solar cycle and its following period of the extremely low solar activity in 2008–2009. This study has also involved the comparative analysis of the observed data versus the model predictions by IRI-2012. During the high solar activity in 2000–2002, seasonal variations show a complicated cross-hemisphere behavior influenced by the winter and semi-annual anomalies, with the largest noon-time values of TEC and NmF2 observed around equinoxes. Strength of the winter anomaly in NmF2 was significantly greater at Juliusruh in comparison with Hobart. The winter anomaly in GPS vTEC values was much weaker than in NmF2 for the Northern hemisphere mid-latitudes and was entirely absent at the Southern hemisphere. Cross-hemisphere analysis of the equivalent slab thickness shows its clear seasonal dependence for all levels of solar activity: the day-time maximum τmax is observed during local summer, whereas the day-time minimum τmin is observed during local winter. The night-time values of τ were higher compared to the day-time values during the winter and equinox seasons. Comparative model-data study shows rather good IRI performance of the day-time NmF2 for mid-latitudes of both hemispheres and rather noticeable overestimations for the mid-night NmF2 values during high solar activity. Analysis of IRI vTEC demonstrates the model limitations, related with the absence of the plasmaspheric part, and actual demand in a reliable and standard ionosphere–plasmasphere model for analysis of GPS vTEC.  相似文献   

5.
Particulate component of the Mars atmosphere composed by micron-sized products of soil weathering and water ice clouds strongly affects the current climate of the planet. In the absence of a dust storm so-called permanent dust haze with τ  0.2 in the atmosphere of Mars determines its thermal structure. Dust loading varies substantially with the season and geographic location, and only the data of mapping instruments are adequate to characterize it, such as TES/MGS and IRTM/Viking. In spite of vast domain of collected data, no model is now capable to explain all observed spectral features of dust aerosol. Several mineralogical and microphysical models of the atmospheric dust have been proposed but they cannot explain the pronounced systematic differences between the IR data (τ = 0.05–0.2) and measurements from the surface (Viking landers, Pathfinder) which give the typical “clear” optical depth of τ  0.5 from one side, and ground-based observations in the UV–visible range showing much more transparent atmosphere, on the other side. Also the relationship between τ9 and the visible optical depth is not well constrained experimentally so far. Future focused measurements are therefore necessary to study Martian aerosol.  相似文献   

6.
We observed the radio and X-ray source G359.23–0.82, also known as “the Mouse”, with XMM-Newton. The X-ray image of this object shows a point-like source at the Mouse’s “head”, accompanied by a “tail” that extends for about 40″ westward. The morphology is consistent with that observed recently with Chandra [Gaensler, B.M., van der Swaluw, E., Camilo, F., et al. The Mouse that soared: high resolution X-ray imaging of the pulsar-powered bow shock G359.23–0.82, ApJ 616, 383–402, 2004]. The spectrum of the head can be described by a power-law model with a photon index Γ  1.9. These results confirm that the Mouse is a bow-shock pulsar wind nebula (PWN) powered by PSR J1747–2958. We found that the hydrogen column density toward the Mouse, NH = (2.60 ± 0.09) × 1022 cm−2, is 20%–40% lower than those toward two serendipitously detected X-ray bursters, SLX 1744–299 and SLX 1744–300. At a plausible distance of 5 kpc, the X-ray luminosity of the Mouse, L(0.5–10 keV) = 3.7 × 1034 erg s−1, is 1.5% of the pulsar’s spin-down luminosity. We detected a Type I X-ray burst from SLX 1744–300 and found a possible decrease of NH and persistent luminosity for this source, in comparison with those observed with ROSAT in 1992.  相似文献   

7.
The data presented in this work describes the diurnal and seasonal variation in hmF2, NmF2, and the electrojet current strength over an African equatorial station during a period of low solar activity. The F2 region horizontal magnetic element H revealed that the Solar quiet Sq(H) daily variation rises from early morning period to maximum around local noon and falls to lower values towards evening. The F2 ionospheric current responsible for the magnetic field variations is inferred to build up at the early morning hours, attaining maximum strength around 1200 LT. The Sq variation across the entire months was higher during the daytime than nighttime. This is ascribed to the variability of the ionospheric parameters like conductivity and winds structure in this region. Seasonal daytime electrojet (EEJ) current strength for June solstice, March and September equinoxes, respectively had peak values ranging within 27–35 nT (at 1400 LT) , 30–40 nT (at 1200 LT) and 35–45 nT (at 1500 LT). The different peak periods of the EEJ strength were attributed to the combined effects of the peak electron density and electric field. Lastly, the EEJ strength was observed to be higher during the equinoxes than the solstice period.  相似文献   

8.
Hard X-ray observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) of the October 29, 2003 GOES X10 two-ribbon flare are used together with magnetic field observations from the Michelson Doppler Imager (MDI) onboard SoHO to compare footpoint motions with predictions from magnetic reconnection models. The temporal variations of the velocity v of the hard X-ray footpoint motions and the photospheric magnetic field strength B in footpoints are investigated. The underlying photospheric magnetic field strength is generally higher (B  700–1200 G) in the slower moving (v  20–50 km s−1) western footpoint than in the faster (v  20–100 km s−1) moving eastern source (∼100–600 G). Furthermore, a rough temporal correlation between the HXR flux and the product vB2 is observed.  相似文献   

9.
We present measurements of the thermal conductivity λ(t, P, L) = l/ρ(t, P, L) near the superfluid transition of 4He at saturated vapor pressure and confined in cylindrical geometries with radii L = 0.5 and 1.0 μm (t  T/Tλ(P)  1). For L = 1.0 μm measurements at six pressures P are presented. At and above Tλ the data are consistent with a universal scaling function F(X) = (L/ξo)x/ν(ρ/ρ0), X = (L/ξo)1/νt valid for all P (ρ0 and x are the pressure-dependent amplitude and effective exponent of the bulk resistivity ρ(t, P, ∞) = ρ0tx and ξ = ξ0tν is the correlation length). Indications of breakdown of scaling and universality are observed below Tλ.  相似文献   

10.
The paper presents data from some campaigns at Sura heating facility in 2011–1016. The experiments on probing of the artificial disturbed region of the lower ionosphere were carried out at two observation sites. One of them was located near Vasil’sursk 1 km from Sura facility (56.1°N; 46.1°E) and the other site was located at the Observatory (55.85°N; 48.8°E) of Kazan State University, 170 km to the East. Investigation of the features of the disturbed region of the lower ionosphere based on its diagnostics by the methods of the vertical sounding and oblique backscattering is the main goal of this paper. Ionosphere disturbance was fulfilled by the effect of the powerful radio wave of the ordinary or extraordinary polarization emitted by transmitters of the Sura facility with effective radiated power ERP = 50–120 MW at the frequency of 4.3, 4.7 and 5.6 MHz. Pumping waves were emitted with period from 30 s to 15 min. The disturbed region of the ionosphere in Vasil’sursk was probed by the vertical sounding technique using the partial reflexion radar at the frequency of 2.95 and 4.7 MHz. For the oblique sounding of the disturbed region the modified ionosonde Cyclon-M, operating at ten frequencies from 2.01 to 6.51 MHz was used at the Observatory site. On many heating sessions simultaneous variations of the probing partial reflection signals in Vasil’sursk and backscattered signals in Observatory were observed at the height at 40–100 km below the reflection height of the pumping wave. These observations were correlated with the pumping periods of the Sura facility. Possible mechanisms of the appearance of the disturbance in the lower ionosphere and its effect on the probing radio waves are discussed.  相似文献   

11.
The total electron content (TEC) measurements from a network of GPS receivers were analyzed to investigate the storm time spatial response of ionosphere over the Indian longitude sector. The GPS receivers from the GPS Aided Geo Augmented Navigation (GAGAN) network which are uniquely located around the ∼77°E longitude are used in the present study so as to get the complete latitudinal coverage from the magnetic equator to low mid-latitude region. We have selected the most intense storms but of moderate intensity (−100 nT < Dst < −50 nT) which occurred during the unusually extremely low solar activity conditions in 2007–2009. Though the storms are of moderate intensity, their effects on equatorial to low mid-latitude ionosphere are found to be very severe as TEC deviations are more than 100% during all the storms studied. Interesting results in terms of spatial distribution of positive/negative effects during the main/early recovery phase of storms are noticed. The maximum effect was observed at crest region during two storms whereas another two storms had maximum effect near the low mid-latitude region. The associated mechanisms like equatorial electrodynamics and neutral dynamics are segregated and explained using the TIMED/GUVI and EEJ data during these storms. The TEC maps are generated to investigate the storm time development/inhibition of equatorial ionization anomaly (EIA).  相似文献   

12.
In this paper, we present and discuss the response of the ionospheric F-region in the American sector during the intense geomagnetic storm which occurred on 24–25 October 2011. In this investigation ionospheric sounding data obtained of 23, 24, 25, and 26 October 2011 at Puerto Rico (United States), Jicamarca (Peru), Palmas, São José dos Campos (Brazil), and Port Stanley, are presented. Also, the GPS observations obtained at 12 stations in the equatorial, low-, mid- and high-mid-latitude regions in the American sector are presented. During the fast decrease of Dst (about ∼54 nT/h between 23:00 and 01:00 UT) on the night of 24–25 October (main phase), there is a prompt penetration of electric field of magnetospheric origin resulting an unusual uplifting of the F region at equatorial stations. On the night of 24–25 October 2011 (recovery phase) equatorial, low- and mid-latitude stations show h′F variations much larger than the average variations possibly associated with traveling ionospheric disturbances (TIDs) caused by Joule heating at high latitudes. The foF2 variations at mid-latitude stations and the GPS-VTEC observations at mid- and low-latitude stations show a positive ionospheric storm on the night of 24–25 October, possibly due to changes in the large-scale wind circulation. The foF2 observations at mid-latitude station and the GPS-VTEC observations at mid- and high-mid-latitude stations show a negative ionospheric storm on the night of 24–25 October, probably associated with an increase in the density of molecular nitrogen. During the daytime on 25 October, the variations in foF2 at mid-latitude stations show large negative ionospheric storm, possibly due to changes in the O/N2 ratio. On the night of 24–25, ionospheric plasma bubbles (equatorial irregularities that extended to the low- and mid-latitude regions) are observed at equatorial, low- and mid-latitude stations. Also, on the night of 25–26, ionospheric plasma bubbles are observed at equatorial and low-latitude regions.  相似文献   

13.
武汉地区电离层TEC和NmF2及板厚的季节变化   总被引:3,自引:2,他引:1  
通过利用武汉电离层观测站(114.4°E,30.6°N)1980-1990年对E8T-Ⅱ卫星信标的法拉第旋转测量的TEC(电子浓度总含量)数据,以及由测高仪测量的1980-1990年间的f0F2(F2层临界频率)数据,研究了武汉地区TEC,NmF2(最大电子浓度)和板厚的季节变化,同时比较了IRI和武汉单站模式在预测NmF2季节性方面的有效性.武汉单站模式在预测NmF2季节性变化方面优于IRI模式.   相似文献   

14.
We present a Monte-Carlo technique to study the time-dependent transport of energetic particles in the interplanetary medium. We use the guiding center approximation between discrete finite pitch-angle scatterings to quantify the competing effects of focusing and pitch-angle scattering on energetic particles propagating along a Parker spiral magnetic field. We consider that the pitch-angle scattering process is produced by small-scale magnetic field irregularities frozen in the expanding solar wind. We also include the effects of both solar wind convection and adiabatic deceleration. We use a joint probability distribution P(h, μ′) = p(h; μ′)q(μ′; μ) to describe both the distance traveled by the particle between two scattering processes and the change in the particle pitch-angle after a scattering process. Here, p(h; μ′) is the conditional probability that the particle travels a distance h along the field line before the next scattering if it had a pitch-angle cosine μ′ after the previous scattering, and q(μ′; μ) is the conditional probability for the pitch-angle cosine μif the pitch-angle cosine was μ before the scattering. We consider several functional forms to describe the processes of pitch-angle scattering, such as an isotropic scattering without any memory of the initial particle’s pitch-angle or processes in which the scattering result depends upon the initial particle’s pitch-angle. The results of our simulations are pitch-angle distributions and time-intensity profiles that can be directly compared to spacecraft observations. Comparison of our simulations with near-relativistic (45–290 keV) electron events observed by the Electron, Proton and Alpha Monitor on board the Advanced Composition Explorer allows us to estimate both the time dependence of the injection of near-relativistic electrons into the interplanetary medium and the conditions for electron propagation along the interplanetary magnetic field.  相似文献   

15.
We study the effect of the angular resolution on the determination of the angular properties of the facular radiance. We analyze photospheric intensity in the continuum, around the Ni 676.8 nm line, and longitudinal magnetic field along the line of sight, measured by the MDI instrument aboard SOHO with two spatial resolutions, 4″ and 1.2″ (2″ and 0.6″ pixels, respectively). The effect of the limited photometric sensitivity of the instrument and the limited information on the angular structure of the magnetic field tubes are considered. Our study of the high-resolution data shows that intensity contrast of magnetic features between 80 and 600 Gauss increases from centre to limb up to a maximum that occurs at higher heliocentric angles (θ) when obtained with higher resolution data than for lower resolution data. There is a suggestion that at heliocentric angles below about 75° there is only a monotonic increase in the contrast as one goes from cos (θ) = 1 to cos (θ) = 0.2.  相似文献   

16.
The hysteresis effect for small energies of galactic cosmic rays is due to two effects. The first is the same as for neutron monitor energies – the delay of the interplanetary processes responsible for cosmic ray modulation with respect to the initiating solar processes, according to the effective velocity of solar wind and shock waves propagation. Then, the observed cosmic ray intensity is connected to the solar activity variations during many months before the time of cosmic ray measurement. The second is caused by the time delay of small energy cosmic ray diffusion from the boundary of modulation region to the Earth’s orbit. The model describing the connection between solar activity variation and cosmic ray convection–diffusion global modulation for neutron monitor energies is here developed by taking into account also the time-lag of the small energy particle diffusion in the Heliosphere. We use theoretical results on drifts and analytically approximate the dependences of drifts from tilt angle, and take into account the dependence from the sign of primary particles, and from the sign of polar magnetic field (A > 0 or A < 0). The obtained results are applied on proton and alpha-particle satellite data. We analyze satellite 5-min data of proton fluxes with energies >1 MeV, >2 MeV, >5 MeV, >10 MeV, >30 MeV, >50 MeV, >60 MeV, >100 MeV, and in intervals 10–30 MeV, 30–60 MeV, and 60–100 MeV during January 1986–December 1999. We exclude periods with great cosmic ray increases caused by particle acceleration in solar flare events. Then, we determine monthly averaged fluxes, as well as 5-month and 11-month smoothed data. We analyze also satellite 5-min data on alpha-particle fluxes in the energy intervals 60-160 MeV, 160–260 MeV and 330–500 MeV during January 1986–May 2000. We correct observation data for drifts and then compare with what is expected according to the convection–diffusion mechanism. We assume different dimensions of the modulation region (by the time propagation X0 of solar wind from the Sun to the boundary of modulation region), for X0 values from 1 to 60 average months, by one-month steps. For each value of X0 we determine the correlation coefficient between variations of expected and observed cosmic ray intensities (the estimation of cosmic ray intensities values is given in Section 3 by Eq. (9), and the determination of correlation and regression coefficients in Section 3 by Eq. (8)). The dimension of modulation region is determined by the value of X0 max, for which the correlation coefficient reaches the maximum value. Then the effective radial diffusion coefficient and residual modulation in small energy region can be estimated.  相似文献   

17.
The spatial distributions of galactic and anomalous cosmic rays in the heliosphere at the solar minima of Cycles 20/22 (qA > 0) and of Cycle 21 (qA < 0) are studied, using data from IMP 8, Voyagers 1/2 and Pioneer 10. It is found that the radial dependences of intensities J can be approximated by a power of radial distance r as J  rα with a different value of a constant in the inner and outer heliosphere with a transition at a radial distance of 10–15 AU. To study the physical meaning of these radial intensity profiles we examined the rigidity dependences of the intensity gradients by determining the particle mean free paths, using a simple one-dimensional modulation model. The particle mean free path λ was assumed to be a separable function of distance of the form rγ and rigidity R of Rδ over the range of 0.5–3.0 GV in the inner and outer heliosphere. It was shown that λ of rigidity dependence of R1.6 determined for Cycle 20/22 (qA > 0) with anomalous He is about 4–5 times larger than that of Cycle 21 (qA < 0) with R0.9 at around 1 GV in the outer heliosphere, and that the radial dependences are r1.4 and r1.1, respectively, for Cycles 20/22 and for Cycle 21.  相似文献   

18.
The Ionospheric F2-layer peak parameters response to a magnetic storm had been investigated over Ilorin, Nigeria (Lat. 8:53°N, Long. 4.5°E, dip angle, −2.96°), Jicamarca, Peru (11.95°S, 76.87°W, dip angle, 0.8°) and Hermanus, South Africa (34.42°S, 19.22°E, dip angle, −60.77°), using percentage enhancement/depletion values. Our results showed an enhancement in NmF2 at all of these stations. Averagely, pre-noon and post-noon peaks are highest at Ilorin during quiet time. The similar pattern observed for quiet condition between Ilorin and Jicamarca was due to their latitudinal positions. For disturbed NmF2 condition, Jicamarca and Ilorin recorded higher peaks at nighttime than during the daytime for the storms main phase, and the reverse over Hermanus. The nighttime and daytime increases were observed respectively at Ilorin and Hermanus during the recovery period. The hmF2 variation recorded higher enhancement at Jicamarca during the daytime and at Hermanus at nighttime during the main phase. During the recovery phase, the highest enhancement was recorded during the daytime at Jicamarca, and over Hermanus at nighttime. These observations find their explanation in the magnetospheric current, solar wind and E × B drift.  相似文献   

19.
We present the spatial maps of the ionosphere–plasmasphere slab thickness τ (ratio of the vertical total electron content, TEC, to the F-region peak electron density, NmF2) during the intense ionospheric storms of October–November 2003. The model-assisted technology for estimate of the upper boundary of the ionosphere, hup, from the slab thickness components in the bottomside and topside ionosphere – eliminating the plasmasphere contribution of τ – is applied at latitudes 35° to 70°N and longitudes −10° to 40°E, from the data of 20 observatories of GPS-TEC and ionosonde networks, for selected days and hours of October and November 2003. The daily–hourly values of NmF2, hmF2 and TECgps are used as the constrained parameters for the International Reference Ionosphere extended to the plasmasphere, IRI-Plas, during the ionospheric quiet days, positive and negative storm phases for estimate of τ and hup. Good correlation has been found between the slab thickness and the upper boundary of the ionosphere for the intense ionospheric storms at October–November 2003. During the negative phase of the ionospheric storm, when the ionospheric plasma density is exhausted, the nighttime upper boundary of the ionosphere is greatly uplifted towards the magnetosphere tail, while the daytime upper boundary of the ionosphere is reduced below 500 km over the Earth.  相似文献   

20.
Variations of galactic cosmic ray intensity have been studied based on the neutron monitors and interplanetary magnetic field experimental data for different ascending and descending epochs of solar activity. The dependence of the diffusion coefficient on the cosmic ray particles rigidity R is stronger in the maxima epoch than in the minima epoch of solar activity. For the period of 1977–1981 (qA > 0) the diffusion coefficient for the minimum epoch is, χmin  R0.7 ± 0.04 and for the maximum χmax  R1.3 ± 0.05; for the period of 1987–1990 (qA < 0), χmin  R0.8 ± 0.05 and χmax  R1.1 ± 0.04. The exponents νy and νz of the power spectral density of the By and Bz components of the IMF in the region of the frequencies (10−6– 4 × 10−6) Hz are larger for the minimum epoch of 1987 (νy  2.0 and νz  1.93) than for the maximum epoch of 1990 (νy  1.43 and νz  1.27).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号