首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents an overview of the main features of ESA's future space debris database DISCOS (Database and Information System Characterising Objects in Space). The DISCOS system has been developed around an ORACLE relational database management software by the University of Kent (UK) under an ESA contract. The DISCOS catalogue will be installed at ESOC, the European Space Operations Centre, and serve as a common ESA information system for the space debris environment.  相似文献   

2.
  总被引:1,自引:1,他引:1  
针对临近空间大气环境复杂时空变化的定量表征和仿真建模,基于11年TIMED/SABER大气密度数据,采用网格划分和数学统计的方法,得到了38°N大气密度在20~100 km的气候平均值和标准差。定量结果用于表征和分析了静态缓变气候平均态以及动态瞬变大气扰动态的变化规律,结果表明,38°N大气平均密度随高度、季节、经度变化显著。在此基础上,提出了临近空间大气密度表征为气候平均量和大气扰动量之和的建模方法,并建立了大气随机扰动自回归模型,通过仿真试验及与激光雷达大气密度实测数据的比较,结果表明该建模方法可行。  相似文献   

3.
Precision radar tracking data taken in 1985 on two spherical satellites has been used to evaluate atmospheric density models: Jacchia 1971 [CIRA 1972], Jacchia 1977, and MSIS 1983, using Cook's definition of Cd /2/. The satellites have perigee heights of 270 km and 780 km. For each day, using numerical integration, an independent trajectory was computed, including a drag scale factor (S). The difference of S from unity represents the error in the atmospheric model used to compute the drag. At 270 km the three models performed equally well, as S was consistently close to unity. This was true for all hour angles and latitudes. At 780 km the scale factors ranged from 0.1 to 1.8 for all models. However, for the Jacchia 1977 model, the average scale factor was 0.943, and represents the best model at that altitude. Computer timing was also done. For orbit computation, drag models need further improvement, and the Jacchia 1977 model seems the best available today in terms of accuracy and computational efficiency.  相似文献   

4.
Zodiacal light is examined as a “foreground noise” limiting the space photometry of faint objects. Emphasis is given to the ways of increasing the signal to noise ratio by an appropriate choice of observational epoch. In the case of the Space Telescope, predictions of average values of this ratio for the extreme faintness case V = 28 are derived from the expected performances announced by NASA and from the recent table of zodiacal brightnesses, as obtained from observations at Tenerife ([1], table 2).  相似文献   

5.
With the intense increase in space objects, especially space debris, it is necessary to efficiently track and catalog the extensive dense clusters of space objects. As the main instrument for low earth orbit (LEO) space surveillance, ground-based radar system is usually limited by its resolution while tracking small space debris with high density. Thus, the obtained measurement information could have been seriously missed, which makes the traditional tracking method inefficient. To address this issue, we conceived the concept of group tracking. For group tracking, the overall tendency of the group objects is expected to be revealed, and the trajectories of individual objects are simultaneously reconstructed explicitly. According to model the interaction between the group center and individual trajectories using the Markov random field (MRF) within Bayesian framework, the objects’ number and individual trajectory can be estimated more accurately in the condition of high miss alarm probability. The Markov chain Monte Carlo (MCMC)-Particle algorithm was utilized for solving the Bayesian integral problem. Furthermore, we introduced the mechanism for describing the behaviors of groups merging and splitting, which can expand the single group tracking algorithm to track variable multiple groups. Finally, simulation of the group tracking of space objects was carried out to validate the efficiency of the proposed method.  相似文献   

6.
Outgassing from materials as well as deliberate gaseous and liquid releases create contaminant clouds around spacecraft that can degrade both instrumentation and measurements. This paper describes a new method for estimating outgassing water vapor concentrations around space vehicles. Water vapor ions measured in the course of a rocket experiment performed at Eglin AFB, Florida, on December 12, 1980 at 2311 UT are utilized to demonstrate the technique. The H2O concentration near the payload's surface is calculated using the rate coefficient for the fast charge transfer process, O+ + H2O + H2O+ + O, the source of the observed water vapor ions. It is found that the measured H2O+ ions were produced within 3–4 cm of the sampling plate's surface and that the average H2O pressure over this distance was relatively constant on ascent at 8 × 10?6 torr, within a factor two, implying a steady outgassing rate.  相似文献   

7.
Facing the complex aerodynamic environment of Mars atmosphere, a composite atmospheric entry trajectory tracking strategy is investigated in this paper. External disturbances, initial states uncertainties and aerodynamic parameters uncertainties are the main problems. The composite strategy is designed to solve these problems and improve the accuracy of Mars atmospheric entry. This strategy includes a model predictive control for optimized trajectory tracking performance, as well as a disturbance observer based feedforward compensation for external disturbances and uncertainties attenuation. 500-run Monte Carlo simulations show that the proposed composite control scheme achieves more precise Mars atmospheric entry (3.8?km parachute deployment point distribution error) than the baseline control scheme (8.4?km) and integral control scheme (5.8?km).  相似文献   

8.
A ground-based electro-optical (EO) array, deployed at the Jilin Space Tracking Base of Changchun Observatory, China, has been in operation since April 2017. The array has 8 small telescopes, each has an aperture of 15 cm and a field of view of 14° × 14°. On average, the array can collect angles data over 3–4 thousand Very Short Arcs (VSAs) of Low Earth Orbit (LEO) space objects each night. Correlation of the VSA angles data with the NORAD catalogue objects results in about 85% of all the VSAs being correlated to NORAD objects. The remaining 15% VSAs angles data could be supposed from uncatalogued objects. The Initial Orbit Determination (IOD) solutions of the VSAs with the range-search method and the association results of the IODs with the geometrical method are presented. The mean IOD success rate is about 91% and the True Positive (TP) rate is more than 86%. In addition, the classical Gauss, Laplace, Gooding and Double-r angles-only IOD methods are applied to process VSA angles data and their performance is assessed. The CBTA method is used to associate the IOD tracks and compared with the geometrical method. A set of procedures for identifying the uncatalogued objects based on the VSA angles data is designed. Processing of the VSA angles data from Aug 4 to Sep 30, 2017 reveals there are possibly 415 uncatalogued LEO objects.  相似文献   

9.
    
针对经验的空间大气模型会在轨道预报中造成较大的误差,以某型号卫星作为基准航天器,提出2种不同精度的轨道预报模型作为仿真基础,以产生训练数据和测试数据。利用3种数据挖掘中的分类方法,如支持向量机(SVM)、神经网络(NN)、随机森林(RF)等方法,对空间大气模型在轨道预报时造成的误差进行监督学习,借此反演误差简化模型中大气模型的偏差并进行修正。分类器的训练结果表明,随机森林方法由于随机选择决策树、随机选择分类项目,按照最大概率反演的大气模型误差准确率高达99.99%,支持向量机次之,最大准确率仅为50.7%,前馈负向传播神经网络容易出现不学习的情况,应用效果最差。相比传统数理统计方法,本文方法具有快速处理大数据集、能够挖掘隐藏在轨道预报微小误差中的潜在信息等优势。  相似文献   

10.
This paper evaluates orbit accuracy and systematic error for altimeter satellite precise orbit determination on TOPEX, Jason-1, Jason-2 and Jason-3 by comparing the use of four SLR/DORIS station complements from the International Terrestrial Reference System (ITRS) 2014 realizations with those based on ITRF2008. The new Terrestrial Reference Frame 2014 (TRF2014) station complements include ITRS realizations from the Institut National de l’Information Géographique et Forestière (IGN) ITRF2014, the Jet Propulsion Laboratory (JPL) JTRF2014, the Deutsche Geodätisches Forschungsinstitut (DGFI) DTRF2014, and the DORIS extension to ITRF2014 for Precise Orbit Determination, DPOD2014. The largest source of error stems from ITRF2008 station position extrapolation past the 2009 solution end time. The TRF2014 SLR/DORIS complement impact on the ITRF2008 orbit is only 1–2 mm RMS radial difference between 1992–2009, and increases after 2009, up to 5 mm RMS radial difference in 2016. Residual analysis shows that station position extrapolation error past the solution span becomes evident even after two years, and will contribute to about 3–4 mm radial orbit error after seven years. Crossover data show the DTRF2014 orbits are the most accurate for the TOPEX and Jason-2 test periods, and the JTRF2014 orbits for the Jason-1 period. However for the 2016 Jason-3 test period only the DPOD2014-based orbits show a strong and statistically significant margin of improvement. The positive results with DTRF2014 suggest the new approach to correct station positions or normal equations for non-tidal loading before combination is beneficial. We did not find any compelling POD advantage in using non-linear over linear station velocity models in our SLR & DORIS orbit tests on the Jason satellites. The JTRF2014 proof-of-concept ITRS realization demonstrates the need for improved SLR+DORIS orbit centering when compared to the Ries (2013) CM annual model. Orbit centering error is seen as an annual radial signal of 0.4 mm amplitude with the CM model. The unmodeled CM signals show roughly a 1.8 mm peak-to-peak annual variation in the orbit radial component. We find the TRF network stability pertinent to POD can be defined only by examination of the orbit-specific tracking network time series. Drift stability between the ITRF2008 and the other TRF2014-based orbits is very high, the relative mean radial drift error over water is no larger than 0.04 mm/year over 1993–2015. Analyses also show TRF induced orbit error meets current altimeter rate accuracy goals for global and regional sea level estimation.  相似文献   

11.
针对编队飞行星座,提出了一种全自主的高精度定轨与相对位置精确测定方法,对其主要关键技术之一的空间绝对定向的基本方案及其可行性和指标进行了研究,并进行了仿真验证.结果表明,通过编队星座星间高精度的距离测量和绝对定向观测,可以实现无需地面测控站和卫星导航系统支持下的编队星座全自主导航方案;在一定测距和测向误差条件下,绝对定轨精度可以优于20m,相对位置确定精度可优于10cm.相对误差与采样间隔有较明显关系,未来可考虑采样间隔控制在10s以内即可;绝对位置误差大小与采样间隔无明显关系,其中的主要误差是星座的整体平移误差.仿真结果验证了所提方案的正确性.   相似文献   

12.
Like all natural hazards, space weather exhibits occasional extreme events over timescales of decades to centuries. Historical events provoked much interest, and sometimes alarm, because bright aurora becomes visible at mid-latitudes. However, they had little economic impact because the major technologies of those eras were not sensitive to space weather. This is no longer true. The widespread adoption of advanced technological infrastructures over the past 40 years has created significant sensitivity. So these events now have the potential to disrupt those infrastructures – and thus have profound economic and societal impact. However, like all extreme hazards, such events are rare, so we have limited data on which to build our understanding of the events. This limitation is uniquely serious for space weather since it is a global phenomenon. Many other natural hazards (e.g. flash floods) are highly localised, so statistically significant datasets can be assembled by combining data from independent instances of the hazard recorded over a few decades. Such datasets are the foundation on which reliable risk assessment methodologies are built. But we have a single instance of space weather so we would have to make observations for many centuries in order to build a statistically significant dataset. We show that it is not practicable to assess the risk from extreme events using simple statistical methods. Instead we must exploit our knowledge of solar-terrestrial physics to find other ways to assess these risks. We discuss three alternative approaches: (a) use of proxy data, (b) studies of other solar systems, and (c) use of physics-based modelling. We note that the proxy data approach is already well-established as a technique for assessing the long-term risk from radiation storms, but does not yet provide any means to assess the risk from severe geomagnetic storms. This latter risk is more suited to the other approaches, but significant research is needed to make progress. We need to develop and expand techniques to monitoring key space weather features in other solar systems (stellar flares, radio emissions from planetary aurorae). And to make progress in modelling severe space weather, we need to focus on the physics that controls severe geomagnetic storms, e.g. how can dayside and tail reconnection be modulated to expand the region of open flux to envelop mid-latitudes?  相似文献   

13.
A new type of space debris in near geosynchronous orbit (GEO) was recently discovered and later identified as exhibiting unique characteristics associated with high area-to-mass ratio (HAMR) objects, such as high rotation rates and high reflection properties. Observations have shown that this debris type is very sensitive to environmental disturbances, particularly solar radiation pressure, due to the fact that its motion depends on the actual effective area, orientation of that effective area, reflection properties and the area-to-mass ratio of the object is not stable over time. Previous investigations have modelled this type of debris as rigid bodies (constant area-to-mass ratios) or discrete deformed body; however, these simplifications will lead to inaccurate long term orbital predictions. This paper proposes a simple yet reliable model of a thin, deformable membrane based on multibody dynamics. The membrane is modelled as a series of flat plates, connected through joints, representing the flexibility of the membrane itself. The mass of the membrane, albeit low, is taken into account through lump masses at the joints. The attitude and orbital motion of this flexible membrane model is then propagated near GEO to predict its orbital evolution under the perturbations of solar radiation pressure, Earth’s gravity field (J2), third body gravitational fields (the Sun and Moon) and self-shadowing. These results are then compared to those obtained for two rigid body models (cannonball and flat rigid plate). In addition, Monte Carlo simulations of the flexible model by varying initial attitude and deformation angle (different shape) are investigated and compared with the two rigid models (cannonball and flat rigid plate) over a period of 100?days. The numerical results demonstrate that cannonball and rigid flat plate are not appropriate to capture the true dynamical evolution of these objects, at the cost of increased computational time.  相似文献   

14.
Material density is an important, yet often overlooked, property of orbital debris particles. Many models simply use a typical density to represent all breakup fragments. While adequate for modeling average characteristics in some applications, a single value material density may not be sufficient for reliable impact damage assessments. In an attempt to improve the next-generation NASA Orbital Debris Engineering Model, a study on the material density distribution of the breakup fragments has been conducted and summarized in this paper.  相似文献   

15.
针对空间信息网络体系结构设计和其使命任务的多重性、多维性的问题,提出了一种体系结构可重组设计方法。首先,介绍了空间信息网络及其体系结构的国内外发展现状,分析了研究空间信息网络体系结构可重组设计的需求。其次,结合空间信息网络的概念、结构和特征,建立了松耦合、兼容性、隔离性和可解构的可重组设计原则。同时,定义了管理中心(RMC)和资源中心(RRC)的内涵,分析了RMC和RRC的运行机制,从目标、拓扑、实体、数据、方案5个维度出发提出了一种形式化的可重组网络体系结构模型,并给出了可重组网络体系结构的实现算法流程。最后,以某反导作战活动为例进行了体系结构可组构设计的案例分析,基于STK平台进行可重组网络的仿真演示,着重展示和验证了可重组设计思想在实践中的具体应用,达到了预期目的。  相似文献   

16.
KSR-II, a two-stage sounding rocket of KARI was launched successfully at the Korean Peninsula on June 11, 1998. The apogee of the rocket was 137 km. For the ozone measurement, 8-channel UV and visible radiometers were onboard the rocket. The rocket measured an in situ stratospheric and mesospheric ozone density profile over Korea during its ascending phase using the radiometer and transmitted the data to ground station in real time. The maximum ozone density occurs near 25 km. Retrieved profile has a random error (1σ) of approximately 15% for altitude below 20km, 7% between 20-50 km and 10% greater than 50 km. The retrieved data were compared with Dobson spectrophotometer, ozonesonde, and HALOE onboard the UARS. Our results are in reasonable agreements with others.  相似文献   

17.
To support precise orbit determination of the altimetry missions, the International DORIS Service (IDS) regularly estimates the DPOD (DORIS terrestrial reference frame for Precise Orbit Determination) solution which includes mean positions and velocities of all the DORIS stations. This solution is aligned to the current realization of the International Terrestrial Reference Frame (ITRF) and so, can be seen as a DORIS extension of the ITRF. In 2016, moving to the IDS Combination Center, the DPOD construction scheme changed. The new DPOD solution is produced from a DORIS cumulative position and velocity solution. We present the new methodology used to compute DPOD2014 and its validation procedure. In order to present geophysical applications and interpretations of these results, we show two examples: (1) the Gorkha earthquake (M7.8 – April 2015) generates a 3-D mis-positioning of nearly 55?mm of the EVEB DORIS station at the Everest base camp 90?km from the epicenter. (2) Applying the results the DPOD2014 realization, we show that the most recent vertical velocity of Thule, Greenland is similar to that observed between 2006 and 2010, indicating further ongoing ice mass loss in the Thule region of northwest Greenland.  相似文献   

18.
This article focuses on the genetic identification of observed small cosmic bodies with alleged parental bodies; namely, comets, asteroids and meteoroid swarms. There is a problem of the upper D-value limit as a measure of proximity between the orbits of the bodies in the five-dimensional phase space (Southworth and Hawkins, 1963). In the study of genetic relationships of the comet and meteor complexes, the D value is usually taken as equal to 0.2 for all meteor showers. However, the upper D limit should be investigated for each meteoroid complex. For example, such investigation was performed for the Taurid meteor complex (Porub?an et al., 2006). In this paper, the upper D-criterion limit value was investigated for the Perseid meteor shower. The 1862 III Swift–Tuttle comet is its parental comet.  相似文献   

19.
Clock error estimation has been the focus of a great deal of research because of the extensive usage of clocks in GPS positioning applications. The receiver clock error in the spacecraft orbit determination is commonly estimated on an epoch-by-epoch basis, along with the spacecraft’s position. However, due to the high correlation between the spacecraft orbit altitude and the receiver clock parameters, estimates of the radial component are degraded in the kinematic approach. Using clocks with high stability, the predictable behaviour of the receiver oscillator can be exploited to improve the positioning accuracy, especially for the radial component. This paper introduces two GPS receiver clock models to describe the deterministic and stochastic property of the receiver clock, both of which can improve the accuracy of kinematic orbit determination for spacecraft in low earth orbit. In particular, the clock parameters are estimated as time offset and frequency offset in the two-state model. The frequency drift is also estimated as an unknown parameter in the three-state model. Additionally, residual non-deterministic random errors such as frequency white noise, frequency random walk noise and frequency random run noise are modelled. Test results indicate that the positioning accuracy could be improved significantly using one day of GRACE flight data. In particular, the error of the radial component was reduced by over 40.0% in the real-time scenario.  相似文献   

20.
The evolution of coronal mass ejection/shock system is investigated by numerically solving the usual set of two-dimensional single-fluid polytropic magnetohydrodynamic equations from 1 Rs to 1 AU in the meridian plane. The simulation result reveals that the coronal mass ejection/shock system formed near the sun evolves into the magnetic cloud/shock system near the earth’s orbit through the following three phases: the initial formation, the dominant latitudinal expansion and the similar expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号