共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, a model-based adaptive mobility control method for an Unmanned Aerial Vehicle(UAV) acting as a communication relay is presented, which is intended to improve the network performance in airborne multi-user systems. The mobility control problem is addressed by jointly considering unknown Radio Frequency(RF) channel parameters, unknown multi-user mobility, and non-available Angle of Arrival(AoA) information of the received signal. A Kalman filter and a least-square-based estimation algorithm are used to predict the future user positions and estimate the RF channel parameters between the users and the UAV, respectively. Two different relay application cases are considered: end-to-end and multi-user communications. A line search algorithm is proposed for the former, with its stability given and proven, whereas a simplified gradient-based algorithm is proposed for the latter to provide a target relay position at each decision time step, decreasing the two-dimensional search to a one-dimensional search. Simulation results show that the proposed mobility control algorithms can drive the UAV to reach or track the optimal relay position movement, as well as improving network performance. The proposed method reflects the properties of using different metrics as objective network performance functions. 相似文献
2.
针对固定翼无人机协同作战时的编队集结问题,提出了一种新的路径规划和位置分配方法,并设计了包括航迹跟踪、高度保持和速度控制在内的自动驾驶仪。该路径规划算法通过矩阵迭代得到一组较优的目标点分配方案,满足总航程较小和同时到达约束。根据得到的各无人机飞向目标点的航迹,算出无人机编队集结的代价矩阵。在每架无人机确定了应飞航路后,开始沿航路飞向目标点,在此过程中,纵向采用高度保持自动驾驶仪,横向采用航迹跟踪自动驾驶仪,控制无人机按规定航迹飞行。速度调节自动驾驶仪可根据速度指令调节油门大小加减速,跟踪上目标速度,进而实现编队集结。仿真结果验证了所提出的编队集结控制方法的有效性和可行性。 相似文献
3.
The rendezvous and formation problem is a significant part for the unmanned aerial vehicle(UAV) autonomous aerial refueling(AAR) technique. It can be divided into two major phases: the long-range guidance phase and the formation phase. In this paper, an iterative computation guidance law(ICGL) is proposed to compute a series of state variables to get the solution of a control variable for a UAV conducting rendezvous with a tanker in AAR. The proposed method can make the control variable converge to zero when the tanker and the UAV receiver come to a formation flight eventually. For the long-range guidance phase, the ICGL divides it into two sub-phases: the correction sub-phase and the guidance sub-phase. The two sub-phases share the same iterative process. As for the formation phase, a velocity coordinate system is created by which control accelerations are designed to make the speed of the UAV consistent with that of the tanker.The simulation results demonstrate that the proposed ICGL is effective and robust against wind disturbance. 相似文献
4.
5.
Information freshness is a key factor for Internet-of-Things(Io T) to make appropriate decisions and operations. This paper proposes an analytical framework for evaluating the timeliness performance of the Io T system based on Unmanned Aerial Vehicle(UAV) lossy communications.The performance analysis consists of the outage probability analysis and the Age-of-Information(Ao I) analysis with outages. To begin with, we solve a lossy coding problem formulated from the UAV communication system, and d... 相似文献
6.
7.
惯性/视觉感知信息融合导航定位技术是目前实现无人机不依赖卫星自主导航的最有效手段。但对于面向高空场景的大型无人机,惯性器件误差与视觉里程计尺度误差耦合且特征平面化导致可观测性下降。针对这一问题,提出了利用惯性/激光测距/视觉里程计组合实现尺度误差估计的方法。通过开展误差模型建立、激光测量点与图像中位置匹配、无人机平飞机动下系统可观测性分析等关键技术研究,实现了高空场景下尺度误差的精确估计。经过300m高度机载试验数据验证,算法精度优于1.5%D,对卫星拒止条件下高空无人机自主导航具有重要意义。 相似文献
8.
随着现代战争模式的发展,小型折叠翼多用途无人机成为研究热点。在对折叠翼气动布局方案进行分析的基础上提出了一种Z字型气动布局的折叠方案,并且设计了一种可以自锁的滑块摆杆机构作为展开机构,得到了一种折叠翼多用途无人机机械系统结构。对采用Z字型气动布局的折叠翼无人机模型进行了多次试飞,发现该模型具有良好的便携性,展开机构运行可靠,Z字型气动布局飞行平稳、操控性好。 相似文献
9.
《中国航空学报》2022,35(8):158-167
This paper proposes a new reconfigurable intelligent surface based three-dimensional beam tracking method to solve the beam tracking problems for the unmanned aerial vehicle with obstacles in communication channels. The proposed beam tracking method can not only regulate the reconfigurable intelligent surfaces to achieve the beam tracking of the obstructed communications, but also optimize the transmission efficiency of the communication. Firstly, a reconfigurable intelligent surface is proposed, which can correlate the transmission signals by adjusting the phase-shift matrix. Meanwhile, a new communication channel is constructed according to the reconfigurable intelligent surface, which consists of two parts. The first one is the channel between the unmanned aerial vehicle and the reconfigurable intelligent surface, the other is the channel between the reconfigurable intelligent surface and the ground base station. Note that the transmission performance of the communications can be optimized by adjusting the phase shift of each uniform linear array on the reconfigurable intelligent surface. Then, a new beam tracking method for the unmanned aerial vehicle with obstructed communications is proposed on the basis of the reconfigurable intelligent surface. By proposing the mixed genetic algorithm, the estimation accuracy of the azimuth and elevation angles is improved to enhance the performance of the beam tracking. Finally, the simulations are provided to verify the effectiveness of the proposed three-dimensional beam tracking method with reconfigurable intelligent surface. 相似文献
10.
The use of groups of unmanned aerial vehicles(UAVs) has greatly expanded UAV’s capabilities in a variety of applications, such as surveillance, searching and mapping. As the UAVs are operated as a team, it is important to detect and isolate the occurrence of anomalous aircraft in order to avoid collisions and other risks that would affect the safety of the team. In this paper, we present a data-driven approach to detect and isolate abnormal aircraft within a team of formatted flying aerial vehicles, which removes the requirements for the prior knowledge of the underlying dynamic model in conventional model-based fault detection algorithms. Based on the assumption that normal behaviored UAVs should share similar(dynamic) model parameters, we propose to firstly identify the model parameters for each aircraft of the team based on a sequence of input and output data pairs, and this is achieved by a novel sparse optimization technique. The fault states of the UAVs would be detected and isolated in the second step by identifying the change of model parameters.Simulation results have demonstrated the efficiency and flexibility of the proposed approach. 相似文献
11.
This paper addresses the problem of real-time object tracking for unmanned aerial vehicles. We consider the task of object tracking as a classification problem. Training a good classifier always needs a huge number of samples, which is always time-consuming and not suitable for realtime applications. In this paper, we transform the large-scale least-squares problem in the spatial domain to a series of small-scale least-squares problems with constraints in the Fourier domain using the correlation filter technique. Then, this problem is efficiently solved by two stages. In the first stage, a fast method based on recursive least squares is used to solve the correlation filter problem without constraints in the Fourier domain. In the second stage, a weight matrix is constructed to prune the solution attained in the first stage to approach the constraints in the spatial domain. Then, the pruned classifier is used for tracking. To evaluate proposed tracker's performance, comprehensive experiments are conducted on challenging aerial sequences in the UAV123 dataset. Experimental results demonstrate that proposed approach achieves a state-ofthe-art tracking performance in aerial sequences and operates at a mean speed of beyond 40 frames/s. For further analysis of proposed tracker's robustness, extensive experiments are also performed on recent benchmarks OTB50, OTB100, and VOT2016. 相似文献
12.
This paper describes the general optimization design method of Solar-Powered Unmanned Aerial Vehicle which priority considering propulsion system planning. Based on the traditional solar powered aircraft design method, the propulsion system top-level target parameters which affect the path planning are integrated into the general optimization design. According to the typical mission requirements of Solar-Powered Unmanned Aerial Vehicle, considering the design variables such as wing area, aspect ... 相似文献
13.
《中国航空学报》2024,37(11):386-397
Non-learning based motion and path planning of an Unmanned Aerial Vehicle(UAV)is faced with low computation efficiency,mapping memory occupation and local optimization prob-lems.This article investigates the challenge of quadrotor control using offline reinforcement learn-ing.By establishing a data-driven learning paradigm that operates without real-environment interaction,the proposed workflow offers a safer approach than traditional reinforcement learning,making it particularly suited for UAV control in industrial scenarios.The introduced algorithm evaluates dataset uncertainty and employs a pessimistic estimation to foster offline deep reinforce-ment learning.Experiments highlight the algorithm's superiority over traditional online reinforce-ment learning methods,especially when learning from offline datasets.Furthermore,the article emphasizes the importance of a more general behavior policy.In evaluations,the trained policy demonstrated versatility by adeptly navigating diverse obstacles,underscoring its real-world appli-cability. 相似文献
14.
《中国航空学报》2019,32(11):2466-2479
A novel framework is established for accurate modeling of Powered Parafoil Unmanned Aerial Vehicle (PPUAV). The model is developed in the following three steps: obtaining a linear dynamic model, simplifying the model structure, and estimating the model mismatch due to model variance and external disturbance factors. First, a six degree-of-freedom linear model, or the structured model, is obtained through dynamic establishment and linearization. Second, the data correlation analysis is adopted to determine the criterion for proper model complexity and to simplify the structured model. Next, an active model is established, combining the simplified model with the model mismatch estimator. An adapted Kalman filter is utilized for the real-time estimation of states and model mismatch. We finally derive a linear system model while taking into account of model variance and external disturbance. Actual flight tests verify the effectiveness of our active model in different flight scenarios. 相似文献
15.
16.
《中国航空学报》2024,37(9):433-447
The navigation system plays a pivotal role in guiding aircraft along designated routes,ensuring precise and punctual arrival at destinations.The integration of scene matching with an inertial navigation system enhances the capability of providing a dependable guarantee for success-ful accomplishment of flight missions.Nonetheless,assuring reliability in scene matching encoun-ters significant challenges in areas characterized by repetitive or weak textures.To tackle these challenges,we propose a novel method to assess the reliability of scene matching based on the dis-tinctive characteristics of correlation peaks.The proposed method leverages the fact that the sim-ilarity of the optimal matching result is significantly higher than that of the surrounding area,and three novel indicators(e.g.,relative height,slope of a correlation peak,and ratio of a sub peak to the main peak)are determined to conjointly evaluate the reliability of scene matching.The pro-posed method entails matching a real-time image with a reference image to generate a correlation surface.A correlation peak is then obtained by extracting the portion of the correlation surface exhibiting a significant gradient.Additionally,the matching reliability is determined by considering the relative height,slope,and ratio of the peak collectively.Exhaustive experimental results with two sets of data demonstrate that the proposed method significantly outperforms traditional approaches in terms of precision,recall,and F1-score.These experiments also establish the efficacy of the proposed method in achieving reliable matching in challenging environments characterized by repetitive and weak textures.This enhancement holds the potential to significantly elevate scene-matching-based navigation. 相似文献
17.
18.
Tae Soo No Youdan Kim Min-Jea Tahk Gyeong-Eon Jeon 《Aerospace Science and Technology》2011,15(6):431-439
A procedure to compute guidance commands for controlling the relative geometry of multiple unmanned aerial vehicles (UAVs) in formation flight is proposed. The concepts of branch, global leader, and local leader/follower are used to represent the whole formation geometry. A positive-definite function defined in terms of the formation error is then introduced and the Lyapunov stability theorem is used to obtain the cascade type guidance law. This scheme leads to the synchronized flight of all UAVs while maintaining formation geometry. The results of a high fidelity nonlinear simulation of a reconnaissance and surveillance mission example are presented to show the effectiveness of the proposed guidance law. 相似文献
19.
The tilt rotor unmanned aerial vehicle (TRUAV) exhibits special application value due to its unique rotor structure. However, varying dynamics and aerodynamic interference caused by tiltable rotors are great technical challenges and key issues for TRUAV's high-powered flight con-trols, which have attracted the attention of many researchers. This paper outlines the concept of TRUAV and some typical TRUAV platforms while focusing on control techniques. TRUAV struc-tural features, dynamics modeling, and flight control methods are discussed, and major challenges and corresponding developmental tendencies associated with TRUAV flight control are summa-rized. 相似文献
20.
The observer-based robust fault detection and optimization for a network of unmanned vehicles with imperfect communication channels and norm bounded modeling uncertainties are addressed. The network of unmanned vehicles is modeled as a discrete-time uncertain Markovian jump system. Based on the model, a residual generator is constructed and the sufficient condition for the existence of the desired fault detection filter is derived in terms of linear matrix inequality. Furthermore, a time domain optimization approach is proposed to improve the performance of the fault detection system. The problem of detecting small faults can be formulated as an optimization problem and its solution is given. For preventing false alarms, a new adaptive threshold function is established. The combined fault detection and optimization algorithm and the adaptive threshold are then applied to a network of highly maneuverable technology vehicles to illustrate the effective- ness of the orooosed aooroach. 相似文献