首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
低雷诺数下翼型层流分离泡及吹吸气控制数值研究   总被引:1,自引:0,他引:1  
在低雷诺数下Eppler387翼型表面会出现层流分离泡现象,因此本文使用Fluent求解器开展吹/吸气控制翼型表面层流分离泡的数值研究,主要探究了射流位置、射流角度、射流速度比三个控制参数对层流分离泡控制的影响规律.研究结果表明,采用与SSTκ-ω湍流模型耦合的γ~(Reθt)转捩模型可以准确预测层流分离泡的位置;吹/吸气可以有效抑制低雷诺数下层流分离泡的发展,明显提高低雷诺数下翼型升阻比.固定射流位置,较大吸气速度比和较小吹气速度比可分别获得较好的流动控制效果,且吸气控制比吹气控制对层流分离泡的抑制作用更加有效.  相似文献   

2.
低雷诺数翼型局部振动非定常气动特性   总被引:1,自引:0,他引:1  
李冠雄  马东立  杨穆清  郭阳 《航空学报》2018,39(1):121427-121427
针对低雷诺数翼型特殊的气动特性,采用基于动网格的非定常数值模拟方法,研究翼型表面不同弦向位置的局部蒙皮以不同频率及振幅振动时对低雷诺数翼型气动特性及流场结构的影响,揭示蒙皮振动增升减阻的机理。研究表明,在低雷诺数条件下局部蒙皮振动可有效提高翼型气动特性,与刚性翼型相比蒙皮局部振动可使翼型升力系数提高,阻力系数降低,升阻比提高。振动位置对翼型气动特性及流场结构有显著的影响,振动表面位于翼型前缘附近或位于层流分离泡中心时可有效控制翼型层流分离,从而提高翼型气动特性。振动频率对翼型表面层流分离及转捩位置均有显著的影响,随着振动频率增加,翼型气动特性出现最优值。与刚性翼型相比,表面振动使翼型转捩位置略向上游移动,摩擦阻力增加,但振动使等效翼型相对厚度减小,压差阻力明显减小。在小幅振动范围内,随着振幅增加,流场非定常特性更加显著,翼型升阻比增加。  相似文献   

3.
二维翼型微吸吹气减阻控制新技术数值研究   总被引:1,自引:0,他引:1  
结合抽吸气转捩控制和微吹气湍流减阻控制的特点,探索了一种新的吸吹气减阻控制技术。使用Fluent求解器,并利用用户自定义函数(UDF)二次开发对其自带的Wilcox转捩模式进行了修正。在此基础上,数值研究了吸吹气控制对翼型阻力性能的影响。结果表明:在一定的吸气量范围内,吸气、吸吹气控制都能使翼型总阻力减小,且在同一雷诺数下,吸气控制能使翼型总阻力减小约3%,而吸吹气联合控制使翼型总阻力减小约16%。由此可见,吸吹气控制技术是一种行之有效的减阻控制技术。  相似文献   

4.
低雷诺数下层流分离的等离子体控制   总被引:1,自引:0,他引:1  
孟宣市  杨泽人  陈琦  白鹏  胡海洋 《航空学报》2016,37(7):2112-2122
为有效控制层流分离特性,消除或减弱低雷诺数时小迎角下的升力非线性现象,改善翼型升力特性,并通过翼型的上表面转捩带与油流显示测量对等离子体激励控制机理进行阐述,对厚度为16%椭圆翼型低雷诺数下的气动特性进行了风洞试验研究。在此基础上,在上表面前缘10%弦长处布置激励器,通过压力分布测量观察等离子体激励对层流分离的影响。试验结果表明:当翼型上表面仅发生层流分离时,等离子体激励和转捩带的作用类似,可以有效延迟或者消除后缘层流分离,从而增加升力;当翼型上表面出现层流分离气泡并发生再附现象时,等离子体可以有效减小或者消除层流分离泡的范围,从而减小升力;通过控制层流分离,占空循环等离子体激励可以实现对低雷诺数小迎角下的升力的线性控制。  相似文献   

5.
为了便于工程上翼型的选取及优化,本文针对三个典型翼型边界层稳定性进行对比分析。首先采用eN方法对翼型SD8020进行转捩预测,并采用萘升华实验法检验数值计算的准确性。再利用该数值方法对比了三种典型翼型上表面的转捩位置、不同弦长雷诺数下的压力系数分布、扰动增长率以及最不稳定扰动波的频率。分析结果表明,在相同弦长雷诺数下,NACA0012最先发生转捩,而NACA64-204和RAE2822都保持着较长的层流区;压力梯度对扰动增长有很大影响;同一翼型随弦长雷诺数增长,转捩点雷诺数变大,而不是工程上常采用的固定值。  相似文献   

6.
二维翼型抽吸气层流控制技术的数值研究   总被引:2,自引:0,他引:2  
数值模拟了表面开孔吸气控制下的翼型绕流流场。主要研究了孔径、孔间距、吸气区大小和位置等吸气参数对二维翼型气动性能的影响。计算选用SSTk-ω湍流模型,并对标准的Wilcox转捩模式进行了修正。计算结果表明:修正的转捩模式能较好地模拟表面吸气引起的转捩位置的变化;在不同孔径、孔间距和吸气区位置的吸气控制下,翼型总阻力随吸气系数的增加均呈先减小后增大的变化规律;采用较大的孔径、孔间距以及较小的吸气区域进行吸气控制,具有较大的翼型阻力恢复吸气系数和较低的相对阻力最小值。  相似文献   

7.
基于Favre过滤的大涡模拟方法,对雷诺数Re=10^4,迎角α=6°下的NACA0012翼型上表面吹吸气射流进行了数值模拟,从翼型周围流场流线图、速度场云图、上下表面压力系数曲线以及上表面边界层位移厚度等多角度地分析了射流位置以及速度变化对翼型气动性能的影响。结果表明:射流位置对翼型气动性能影响较大,且吸气射流要明显优于吹气射流。对于吸气射流,前缘吸气要明显优于中后缘吸气,可有效增升减阻,并减小翼型尾部流动分离,抑制翼型气动参数扰动,其最佳吸气位置随着速度的增大逐渐向下游移动;而吹气射流对翼型气动系数的作用效果较差,但中后缘的吹气射流可减小飞行过程中的气动扰动量,且吹气越大,效果越明显。  相似文献   

8.
襟翼吹吸气控制技术在二维多段翼型中应用的数值模拟   总被引:2,自引:0,他引:2  
飞机在增升装置打开的情况下,襟翼后缘流动分离严重,阻碍升力系数的增加,可以采取主动流动控制的方法控制分离,提高升力系数。本文利用FLUENT 6.3.26软件,针对某多段翼,在襟翼上翼面设置吹吸气孔,分别进行吹、吸气控制,通过改变流量和孔的位置,进行了襟翼上翼面吹、吸气流动控制对二维多段翼型升力性能影响的数值模拟。计算结果表明:应用吹、吸气技术均可获得更高的升力系数,且能延迟边界层的分离;不同的吹吸气孔流量、位置,对多段翼升力增量有不同程度的影响。  相似文献   

9.
在低速风洞中对薄翼升力特性进行了试验研究。采用吸气装置在翼型上表面进行流动控制,利用外式天平测量翼型气动力,利用PIV测试设备获取翼型表面流场。试验来流速度为5m/s,雷诺数6.7×104。研究结果表明:过失速条件下,合适的吸气控制可以使翼型失速迎角延迟近7°,最大升力系数可增大近一倍;在翼型前缘进行吸气流动控制时,较小吸气流量即可延缓翼型失速,但当吸气流量达到一定值时后,随吸气流量增大翼型升力基本保持不变;流动控制参数存在优化空间,当吸气相对位置位于x/c=0.4附近时,吸气流量小于3%即可产生较大的升力增量。  相似文献   

10.
利用前缘吸气和顺压梯度,在对称后掠机翼模型上,实现了混合层流控制。在连续式跨声速风洞中,研究了气流马赫数和雷诺数对转捩位置的影响,研究了前缘吸气流量及流量分配对层流控制效果的影响。实验过程中,利用壁面冷却方法,扩大了层流区和湍流区的壁面温度差,利用埋入式安装的热电偶测量了表面温度分布,确定了转捩位置和层流区范围。结果表明,前缘吸气具有良好的层流控制效果,可以使层流区范围显著扩大。前腔吸气流量对层流控制效果影响很大,后腔吸气流量影响较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号