首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We present models of giant planet formation, taking into account migration and disk viscous evolution. We show that migration can significantly reduce the formation timescale bringing it in good agreement with typical observed disk lifetimes. We then present a model that produces a planet whose current location, core mass and total mass are comparable with the one of Jupiter. For this model, we calculate the enrichments in volatiles and compare them with the one measured by the Galileo probe. We show that our models can reproduce both the measured atmosphere enrichments and the constraints derived by Guillot et al. (2004), if we assume the accretion of planetesimals with ices/rocks ratio equal to 4, and that a substantial amount of CO2 was present in vapor phase in the solar nebula, in agreement with ISM measurements.  相似文献   

3.
Owen  T.  Encrenaz  T. 《Space Science Reviews》2003,106(1-4):121-138
This paper reviews our present knowledge about elemental and isotopic ratios in the Giant Planets and Titan. These parameters can provide key information about the formation and evolution of these objects. Element abundances, especially after the results of the Galileo Probe Mass Spectrometer in Jupiter, strongly support the formation model invoking an initial core formation (Mizuno, 1980; Pollack et al., 1996). They also suggest that solar composition icy planetesimals (SCIPs) brought the heavy elements to Jupiter. The Jupiter value of D/H appears to be representative of the protosolar value, while the D/H enrichment observed on Uranus and Neptune is consistent with the formation scenario of these planets. The 15N/14N measurement in Jupiter seems to be representative of its protosolar value. Future measurements are expected to come from the Cassini and Herschel space mission, as well as the ALMA submillimeter observatory. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Measurements of the chemical composition of the giant planets provide clues of their formation and evolution processes. According to the currently accepted nucleation model, giant planets formed from the initial accretion of an icy core and the capture of the protosolar gas, mosly composed of hydrogen and helium. In the case of Jupiter and Saturn (the gaseous giants), this gaseous component dominates the composition of the planet, while for Uranus and Neptune (the icy giants) it is only a small fraction of the total mass. The measurement of elemental and isotopic ratios in the giant planets provides key diagnostics of this model, as it implies an enrichment in heavy elements (as well as deuterium) with respect to the cosmic composition. Neutral atmospheric constituents in the giant planets have three possible sources: (1) internal (fromthe bulk composition of the planet), (2) photochemical (fromthe photolysis ofmethane) and(3) external (from meteoritic impacts, of local or interplanetary origin). This paper reviews our present knowledge about the atmospheric composition in the giant planets, and their elemental and istopic composition. Measurements concerning key parameters, like C/H, D/H or rare gases in Jupiter, are analysed in detail. The conclusion addresses open questions and observations to be performed in the future.  相似文献   

5.
In seeking to understand the formation of the giant planets and the origin of their atmospheres, the heavy element abundance in well-mixed atmosphere is key. However, clouds come in the way. Thus, composition and condensation are intimately intertwined with the mystery of planetary formation and atmospheric origin. Clouds also provide important clues to dynamical processes in the atmosphere. In this chapter we discuss the thermochemical processes that determine the composition, structure, and characteristics of the Jovian clouds. We also discuss the significance of clouds in the big picture of the formation of giant planets and their atmospheres. We recommend multiprobes at all four giant planets in order to break new ground.  相似文献   

6.
Most of our knowledge regarding planetary atmospheric composition and structure has been achieved by remote sensing spectroscopy. Planetary spectra strongly differ from one planet to another. CO2 signatures dominate on Mars, and even more on Venus (where the thermal component is detectable down to 1 μm on the dark side). Spectroscopic monitoring of Venus, Earth and Mars allows us to map temperature fields, wind fields, clouds, aerosols, surface mineralogy (in the case of the Earth and Mars), and to study the planets’ seasonal cycles. Spectra of giant planets are dominated by H2, CH4 and other hydrocarbons, NH3, PH3 and traces of other minor compounds like CO, H2O and CO2. Measurements of the atmospheric composition of giant planets have been used to constrain their formation scenario.  相似文献   

7.
Models of the origins of gas giant planets and ‘ice’ giant planets are discussed and related to formation theories of both smaller objects (terrestrial planets) and larger bodies (stars). The most detailed models of planetary formation are based upon observations of our own Solar System, of young stars and their environments, and of extrasolar planets. Stars form from the collapse, and sometimes fragmentation, of molecular cloud cores. Terrestrial planets are formed within disks around young stars via the accumulation of small dust grains into larger and larger bodies until the planetary orbits become well enough separated that the configuration is stable for the lifetime of the system. Uranus and Neptune almost certainly formed via a bottom-up (terrestrial planet-like) mechanism; such a mechanism is also the most likely origin scenario for Saturn and Jupiter.  相似文献   

8.
The processes of planet formation in our Solar System resulted in a final product of a small number of discreet planets and planetesimals characterized by clear compositional distinctions. A key advance on this subject was provided when nucleosynthetic isotopic variability was discovered between different meteorite groups and the terrestrial planets. This information has now been coupled with theoretical models of planetesimal growth and giant planet migration to better understand the nature of the materials accumulated into the terrestrial planets. First order conclusions include that carbonaceous chondrites appear to contribute a much smaller mass fraction to the terrestrial planets than previously suspected, that gas-driven giant planet migration could have pushed volatile-rich material into the inner Solar System, and that planetesimal formation was occurring on a sufficiently rapid time scale that global melting of asteroid-sized objects was instigated by radioactive decay of 26Al. The isotopic evidence highlights the important role of enstatite chondrites, or something with their mix of nucleosynthetic components, as feedstock for the terrestrial planets. A common degree of depletion of moderately volatile elements in the terrestrial planets points to a mechanism that can effectively separate volatile and refractory elements over a spatial scale the size of the whole inner Solar System. The large variability in iron to silicon ratios between both different meteorite groups and between the terrestrial planets suggests that mechanisms that can segregate iron metal from silicate should be given greater importance in future investigations. Such processes likely include both density separation of small grains in the nebula, but also preferential impact erosion of either the mantle or core from differentiated planets/planetesimals. The latter highlights the important role for giant impacts and collisional erosion during the late stages of planet formation.  相似文献   

9.
In this chapter we describe the current knowledge of a selection of collision processes and chemical reactions of importance to planetary aeronomy. Emphasis is placed on critical evaluation of what we know and what we wish we knew about fundamental processes required for interpretation, explanation, and modeling of atmospheric observations.  相似文献   

10.
Magnetic field measurements are very valuable, as they provide constraints on the interior of the telluric planets and Moon. The Earth possesses a planetary scale magnetic field, generated in the conductive and convective outer core. This global magnetic field is superimposed on the magnetic field generated by the rocks of the crust, of induced (i.e. aligned on the current main field) or remanent (i.e. aligned on the past magnetic field). The crustal magnetic field on the Earth is very small scale, reflecting the processes (internal or external) that shaped the Earth. At spacecraft altitude, it reaches an amplitude of about 20 nT. Mars, on the contrary, lacks today a magnetic field of core origin. Instead, there is only a remanent magnetic field, which is one to two orders of magnitude larger than the terrestrial one at spacecraft altitude. The heterogeneous distribution of the Martian magnetic anomalies reflects the processes that built the Martian crust, dominated by igneous and cratering processes. These latter processes seem to be the driving ones in building the lunar magnetic field. As Mars, the Moon has no core-generated magnetic field. Crustal magnetic features are very weak, reaching only 30 nT at 30-km altitude. Their distribution is heterogeneous too, but the most intense anomalies are located at the antipodes of the largest impact basins. The picture is completed with Mercury, which seems to possess an Earth-like, global magnetic field, which however is weaker than expected. Magnetic exploration of Mercury is underway, and will possibly allow the Hermean crustal field to be characterized. This paper presents recent advances in our understanding and interpretation of the crustal magnetic field of the telluric planets and Moon.  相似文献   

11.
Good progress has been made in the past few years to better understand the XUV evolution trend of Sun-like stars, the capture and dissipation of hydrogen dominant envelopes of planetary embryos and protoplanets, and water loss from young planets around M dwarfs. This chapter reviews these recent developments. Observations of exoplanets and theoretical works in the near future will significantly advance our understanding of one of the fundamental physical processes shaping the evolution of solar system terrestrial planets.  相似文献   

12.
The rapidly rotating giant planets of the outer solar system all possess strong dynamo-driven magnetic fields that carve a large cavity in the flowing magnetized solar wind. Each planet brings a unique facet to the study of planetary magnetism. Jupiter possesses the largest planetary magnetic moment, 1.55×1020 Tm3, 2×104 times larger than the terrestrial magnetic moment whose axis of symmetry is offset about 10° from the rotation axis, a tilt angle very similar to that of the Earth. Saturn has a dipole magnetic moment of 4.6×1018 Tm3 or 600 times that of the Earth, but unlike the Earth and Jupiter, the tilt of this magnetic moment is less than 1° to the rotation axis. The other two gas giants, Uranus and Neptune, have unusual magnetic fields as well, not only because of their tilts but also because of the harmonic content of their internal fields. Uranus has two anomalous tilts, of its rotation axis and of its dipole axis. Unlike the other planets, the rotation axis of Uranus is tilted 97.5° to the normal to its orbital plane. Its magnetic dipole moment of 3.9×1017 Tm3 is about 50 times the terrestrial moment with a tilt angle of close to 60° to the rotation axis of the planet. In contrast, Neptune with a more normal obliquity has a magnetic moment of 2.2×1017 Tm3 or slightly over 25 times the terrestrial moment. The tilt angle of this moment is 47°, smaller than that of Uranus but much larger than those of the Earth, Jupiter and Saturn. These two planets have such high harmonic content in their fields that the single flyby of Voyager was unable to resolve the higher degree coefficients accurately. The four gas giants have no apparent surface features that reflect the motion of the deep interior, so the magnetic field has been used to attempt to provide this information. This approach works very well at Jupiter where there is a significant tilt of the dipole and a long baseline of magnetic field measurements (Pioneer 10 to Galileo). The rotation rate is 870.536° per day corresponding to a (System III) period of 9 h 55 min 26.704 s. At Saturn, it has been much more difficult to determine the equivalent rotation period. The most probable rotation period of the interior is close to 10 h 33 min, but at this writing, the number is still uncertain. For Uranus and Neptune, the magnetic field is better suited for the determination of the planetary rotation period but the baseline is too short. While it is possible that the smaller planetary bodies of the outer solar system, too, have magnetic fields or once had, but the current missions to Vesta, Ceres and Pluto do not include magnetic measurements.  相似文献   

13.
This paper is an introduction to volume 56 of the Space Science Series of ISSI, “From disks to planets—the making of planets and their proto-atmospheres”, a key subject in our quest for the origins and evolutionary paths of planets, and for the causes of their diversity. Indeed, as exoplanet discoveries progressively accumulated and their characterization made spectacular progress, it became evident that the diversity of observed exoplanets can in no way be reduced to the two classes of planets that we are used to identify in the solar system, namely terrestrial planets and gas or ice giants: the exoplanet reality is just much broader. This fact is no doubt the result of the exceptional diversity of the evolutionary paths linking planetary systems as a whole as well as individual exoplanets and their proto-atmospheres to their parent circumstellar disks: this diversity and its causes are exactly what this paper explores. For each of the main phases of the formation and evolution of planetary systems and of individual planets, we summarize what we believe we understand and what are the important open questions needing further in-depth examination, and offer some suggestions on ways towards solutions.We start with the formation mechanisms of circumstellar disks, with their gas and disk components in which chemical composition plays a very important role in planet formation. We summarize how dust accretion within the disk generates planet cores, while gas accretion on these cores can lead to the diversity of their fluid envelopes. The temporal evolution of the parent disk itself, and its final dissipation, put strong constraints on how and how far planetary formation can proceed. The radiation output of the central star also plays an important role in this whole story. This early phase of planet evolution, from disk formation to dissipation, is characterized by a co-evolution of the disk and its daughter planets. During this co-evolution, planets and their protoatmospheres not only grow, but they also migrate radially as a result of their interaction with the disk, thus moving progressively from their distance of formation to their final location. The formation of planetary fluid envelopes (proto-atmospheres and oceans), is an essential product of this planet formation scenario which strongly constrains their possible evolution towards habitability. We discuss the effects of the initial conditions in the disk, of the location, size and mass of the planetary core, of the disk lifetime and of the radiation output and activity of the central star, on the formation of these envelopes and on their relative extensions with respect to the planet core. Overall, a fraction of the planets retain the primary proto-atmosphere they initially accreted from the gas disk. For those which lose it in this early evolution, outgassing of volatiles from the planetary core and mantle, together with some contributions of volatiles from colliding bodies, give them a chance to form a “secondary” atmosphere, like that of our own Earth.When the disk finally dissipates, usually before 10 Million years of age, it leaves us with the combination of a planetary system and a debris disk, each with a specific radial distribution with respect to their parent star(s). Whereas the dynamics of protoplanetary disks is dominated by gas-solid dynamical coupling, debris disks are dominated by gravitational dynamics acting on diverse families of planetesimals. Solid-body collisions between them and giant impacts on young planetary surfaces generate a new population of gas and dust in those disks. Synergies between solar system and exoplanet studies are particularly fruitful and need to be stimulated even more, because they give access to different and complementary components of debris disks: whereas the different families of planetesimals can be extensively studied in the solar system, they remain unobserved in exoplanet systems. But, in those systems, long-wavelength telescopic observations of dust provide a wealth of indirect information about the unobserved population of planetesimals. Promising progress is being currently made to observe the gas component as well, using millimetre and sub-millimetre giant radio interferometers.Within planetary systems themselves, individual planets are the assembly of a solid body and a fluid envelope, including their planetary atmosphere when there is one. Their characteristics range from terrestrial planets through sub-Neptunes and Neptunes and to gas giants, each type covering most of the orbital distances probed by present-day techniques. With the continuous progress in detection and characterization techniques and the advent of major providers of new data like the Kepler mission, the architecture of these planetary systems can be studied more and more accurately in a statistically meaningful sense and compared to the one of our own solar system, which does not appear to be an exceptional case. Finally, our understanding of exoplanets atmospheres has made spectacular advances recently using the occultation spectroscopy techniques implemented on the currently operating space and ground-based observing facilities.The powerful new observing facilities planned for the near and more distant future will make it possible to address many of the most challenging current questions of the science of exoplanets and their systems. There is little doubt that, using this new generation of facilities, we will be able to reconstruct more and more accurately the complex evolutionary paths which link stellar genesis to the possible emergence of habitable worlds.  相似文献   

14.
We review results about protoplanetary disk models, protoplanet migration and formation of giant planets with migrating cores. We first model the protoplanetary nebula as an α–accretion disk and present steady state calculations for different values of α and gas accretion rate through the disk. We then review the current theories of protoplanet migration in the context of these models, focusing on the gaseous disk–protoplanet tidal interaction. According to these theories, the migration timescale may be shorter than the planetary formation timescale. Therefore we investigate planet formation in the context of a migrating core, considering both the growth of the core and the build–up of the envelope in the course of the migration. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
2006年12月27日,欧洲"对流旋转和行星凌星"(COROT)天文卫星由俄罗斯新型"联盟"2-1B 火箭从哈萨克斯坦拜科努尔发射场发射升空。COROT 的使命是探寻太阳系外与地球尺寸接近的行星,并对恒星的内部结构进行探测。  相似文献   

16.
The formation of the giant planets seems to be best explained by accretion of planetesimals to form massive cores, which in the case of Jupiter and Saturn were able to capture nebular gas. However, the timescale for accretion of such cores has been a problem. Accretion in the outer solar system differs qualitatively from planetary growth in the terrestrial region, as the larger embryo masses and lower orbital velocities make bodies more subject to gravitational scattering. The planetesimal swarm in the outer nebula may be seeded by earlier-formed large bodies scattered from the region near the nebular “snow line”. Such a seed body can experience rapid runaway growth undisturbed by competitors; the style of growth is not oligarchy, but monarchy.  相似文献   

17.
Observations from planetary spacecraft missions have demonstrated a spectrum of dynamo behaviour in planets. From currently active dynamos, to remanent crustal fields from past dynamo action, to no observed magnetization, the planets and moons in our solar system offer magnetic clues to their interior structure and evolution. Here we review numerical dynamo simulations for planets other than Earth. For the terrestrial planets and satellites, we discuss specific magnetic field oddities that dynamo models attempt to explain. For the giant planets, we discuss both non-magnetic and magnetic convection models and their ability to reproduce observations of surface zonal flows and magnetic field morphology. Future improvements to numerical models and new missions to collect planetary magnetic data will continue to improve our understanding of the magnetic field generation process inside planets.  相似文献   

18.
Planetesimals formed in the solar nebula by collisional coagulation. Dust aggregates settled toward the central plane, the larger ones growing by sweeping up smaller ones. A thin, dense layer of particles formed; shear-generated turbulence and differential motions induced by gas drag inhibited gravitational instability. Growth proceeded by collisions, producing planetesimals on a timescale of a few thousand years in the terrestrial zone. For bodies smaller than about a kilometer, motions were dominated by gas drag, and impact velocities decreased with size. At larger sizes gravitational interactions became significant, and velocities increased due to mutual perturbations. Larger bodies then grew more rapidly, this ``runaway' led to formation of tens to hundreds of lunar- to Mars-sized planetary embryos in the zone of terrestrial planets. The final accretion of these bodies into a few planets involved large impacts, and occurred on a timescale of 107 to 108 years. This scenario gives a reasonably consistent picture of the origin of the terrestrial planets, but does not account for the anomalously low eccentricities of the Earth and Venus. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Noack  Lena  Snellen  Ignas  Rauer  Heike 《Space Science Reviews》2017,212(1-2):877-898
Space Science Reviews - Exoplanet detection missions have found thousands of planets or planet candidates outside of the Solar System—some of which are in the habitable zone, where liquid...  相似文献   

20.
Some possible factors of climate changes and of long term climate evolution are discussed with regard of the three terrestrial planets, Earth, Venus and Mars. Two positive feedback mechanisms involving liquid water, i.e., the albedo mechanism and the greenhouse effect of water vapour, are described. These feedback mechanisms respond to small external forcings, such as resulting from solar or astronomical constants variability, which might thus result in large influences on climatic changes on Earth. On Venus, reactions of the atmosphere with surface minerals play an important role in the climate system, but the involved time scales are much larger. On Mars, climate is changing through variations of the polar axis inclination over time scales of ~105–106 years. Growing evidence also exists that a major climatic change happened on Mars some 3.5 to 3.8 Gigayears ago, leading to the disappearance of liquid water on the planet surface by eliminating most of the CO2 atmosphere greenhouse power. This change might be due to a large surge of the solar wind, or to atmospheric erosion by large bodies impacts. Indeed, except for their thermospheric temperature response, there is currently little evidence for an effect of long-term solar variability on the climate of Venus and Mars. This fact is possibly due to the absence of liquid water on these terrestrial planets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号