首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
When the impact risk from meteoroids and orbital debris is assessed the main concern is usually structural damage. With their high impact velocities of typically 10–20 km/s millimeter or centimeter sized objects can puncture pressure vessels and other walls or lead to destruction of complete subsystems or even whole spacecraft. Fortunately chances of collisions with such larger objects are small (at least at present). However, particles in the size range 1–100 μm are far more abundant than larger objects and every orbiting spacecraft will encounter them with certainty. Every solar cell (8 cm2 area) of the Hubble Space Telescope encountered on average 12 impacts during its 8.25 years of space exposure. Most were from micron sized particles.  相似文献   

2.
Today’s space debris environment shows major concentrations of objects within distinct orbital regions for nearly all size regimes. The most critical region is found at orbital altitudes near 800 km with high declinations. Within this region many satellites are operated in so called sun-synchronous orbits (SSO). Among those, there are Earth observation, communication and weather satellites. Due to the orbital geometry in SSO, head-on encounters with relative velocities of about 15 km/s are most probable and would thus result in highly energetic collisions, which are often referred to as catastrophic collisions, leading to the complete fragmentation of the participating objects. So called feedback collisions can then be triggered by the newly generated fragments, thus leading to a further population increase in the affected orbital region. This effect is known as the Kessler syndrome.  相似文献   

3.
This paper presents the mission design for a CubeSat-based active debris removal approach intended for transferring sizable debris objects from low-Earth orbit to a deorbit altitude of 100 km. The mission consists of a mothership spacecraft that carries and deploys several debris-removing nanosatellites, called Deorbiter CubeSats. Each Deorbiter is designed based on the utilization of an eight-unit CubeSat form factor and commercially-available components with significant flight heritage. The mothership spacecraft delivers Deorbiter CubeSats to the vicinity of a predetermined target debris, through performing a long-range rendezvous maneuver. Through a formation flying maneuver, the mothership then performs in-situ measurements of debris shape and orbital state. Upon release from the mothership, each Deorbiter CubeSat proceeds to performing a rendezvous and attachment maneuver with a debris object. Once attached to the debris, the CubeSat performs a detumbling maneuver, by which the residual angular momentum of the CubeSat-debris system is dumped using Deorbiter’s onboard reaction wheels. After stabilizing the attitude motion of the combined Deorbiter-debris system, the CubeSat proceeds to performing a deorbiting maneuver, i.e., reducing system’s altitude so much so that the bodies disintegrate and burn up due to atmospheric drag, typically at around 100 km above the Earth surface. The attitude and orbital maneuvers that are planned for the mission are described, both for the mothership and Deorbiter CubeSat. The performance of each spacecraft during their operations is investigated, using the actual performance specifications of the onboard components. The viability of the proposed debris removal approach is discussed in light of the results.  相似文献   

4.
航天器微流星体及空间碎片环境与风险分析   总被引:1,自引:0,他引:1  
微流星体及空间碎片的高速撞击威胁着长寿命、大尺寸航天器的安全运行 ,导致其严重的损伤和灾难性的失效。文章对低地球轨道微流星体及空间碎片环境进行了分析 ,给出了微流星体及空间碎片对航天器威胁方向的确定方法 ,得到了空间碎片撞击航天器相对撞击角的概率分布以及地球对微流星体遮挡的影响。编制了风险分析软件 ,以采用单防护屏防护结构的柱状低地球轨道航天器为例进行风险分析。  相似文献   

5.
空间碎片碰撞预警工作主要针对的是可监测的较大空间碎片, 预测航天器与碎片之间的碰撞风险, 并根据一定的预警判据来评估风险的大小, 进而做出合理的轨道规避决策. 碰撞概率是碰撞风险评估的重要依据. 复合体尺寸、交会距离和误差是影响碰撞概率的三个决定性因素. 当复合体尺寸与交会距离差别不大时, 误差因素对碰撞概率结果起着决定性的作用. 在利用整天误差计算碰撞概率的基础上, 提出了利用精化误差计算碰撞概率的方法, 在危险交会分析中取得了良好的效果.   相似文献   

6.
Recent anomalies exhibited by satellites and rocket bodies have highlighted that a population of faint debris exists at geosynchronous (GEO) altitudes, where there are no natural removal mechanisms. Despite previous optical surveys probing to around 10–20 cm in size, regular monitoring of faint sources at GEO is challenging, thus our knowledge remains sparse. It is essential that we continue to explore the faint debris population using large telescopes to better understand the risk posed to active GEO satellites. To this end, we present photometric results from a survey of the GEO region carried out with the 2.54 m Isaac Newton Telescope in La Palma, Canary Islands. We probe to 21st visual magnitude (around 10 cm, assuming Lambertian spheres with an albedo of 0.1), uncovering 129 orbital tracks with GEO-like motion across the eight nights of dark-grey time comprising the survey. The faint end of our brightness distribution continues to rise until the sensitivity limit of the sensor is reached, suggesting that the modal brightness could be even fainter. We uncover a number of faint, uncatalogued objects that show photometric signatures of rapid tumbling, many of which straddle the limiting magnitude of our survey over the course of a single exposure, posing a complex issue when estimating object size. This work presents the first instalment of DebrisWatch, an ongoing collaboration between the University of Warwick and the Defence Science and Technology Laboratory (UK) investigating the faint population of GEO debris.  相似文献   

7.
Between 3.4 and 4.0 AU the dust detection system aboard the Ulysses spacecraft showed an increase in detection rate for particles with masses greater than 5 × 10−13 g. The spacecraft meteoroid encounter geometry indicates highly eccentric orbits detected near aphelion. The outer limit of the enhanced flux is imposed as meteoroids on such orbits move outside the aperture of the dust detector. The inner edge of the enhanced flux would be consistent with the aphelion distance acquired by 50-200 μm particles evolving for 10-20 kyr under Poynting-Robertson drag from an Encke type orbit. We propose such meteoroids provide a source population from which collisional fragmentation produces particles in the mass range to which the Ulysses detector is sensitive. Daughter fragments produced away from the aphelia of the parent orbits, a 2.2 AU, e 0.85, enter hyperbolic orbits which are not evident in the Ulysses data. The spatial density of fragments from collisions very near aphelion drops off rapidly as they evolve inward under Poynting-Robertson drag while collisions closer to 3.4 AU leave the subsequent peak density outside that radius for a significant fraction of the fragment's subsequent lifetime. The rapid orbital evolution for these collision fragments implies a recent breakup and probably a large reservoir of parent meteoroids.  相似文献   

8.
One of the primary mission risks tracked in the development of all spacecraft is that due to micro-meteoroids and orbital debris (MMOD). Both types of particles, especially those larger than 0.1 mm in diameter, contain sufficient kinetic energy due to their combined mass and velocities to cause serious damage to crew members and spacecraft. The process used to assess MMOD risk consists of three elements: environment, damage prediction, and damage tolerance. Orbital debris risk assessments for the Orion vehicle, as well as the Shuttle, Space Station and other satellites use ballistic limit equations (BLEs) that have been developed using high speed impact test data and results from numerical simulations that have used spherical projectiles. However, spheres are not expected to be a common shape for orbital debris; rather, orbital debris fragments might be better represented by other regular or irregular solids. In this paper we examine the general construction of NASA’s current orbital debris (OD) model, explore the potential variations in orbital debris mass and shape that are possible when using particle characteristic length to define particle size (instead of assuming spherical particles), and, considering specifically the Orion vehicle, perform an orbital debris risk sensitivity study taking into account variations in particle mass and shape as noted above. While the results of the work performed for this study are preliminary, they do show that continuing to use aluminum spheres in spacecraft risk assessments could result in an over-design of its MMOD protection systems. In such a case, the spacecraft could be heavier than needed, could cost more than needed, and could cost more to put into orbit than needed. The results obtained in this study also show the need to incorporate effects of mass and shape in mission risk assessment prior to first flight of any spacecraft as well as the need to continue to develop/refine BLEs so that they more accurately reflect the shape and material density variations inherent to the actual debris environment.  相似文献   

9.
It is estimated that more than 22,300 human-made objects are in orbit around the Earth, with a total mass above 8,400,000 kg. Around 89% of these objects are non-operational and without control, which makes them to be considered orbital debris. These numbers consider only objects with dimensions larger than 10 cm. Besides those numbers, there are also about 2000 operational satellites in orbit nowadays. The space debris represents a hazard to operational satellites and to the space operations. A major concern is that this number is growing, due to new launches and particles generated by collisions. Another important point is that the development of CubeSats has increased exponentially in the last years, increasing the number of objects in space, mainly in the Low Earth Orbits (LEO). Due to the short operational time, CubeSats boost the debris population. One of the requirements for space debris mitigation in LEO is the limitation of the orbital lifetime of the satellites, which needs to be lower than 25 years. However, there are space debris with longer estimated decay time. In LEÓs, the influence of the atmospheric drag is the main orbital perturbation, and is used in maneuvers to increment the losses in the satellite orbital energy, to locate satellites in constellations and to accelerate the decay.The goal of the present research is to study the influence of aerodynamic rotational maneuver in the CubeSat?s orbital lifetime. The rotational axis is orthogonal to the orbital plane of the CubeSat, which generates variations in the ballistic coefficient along the trajectory. The maneuver is proposed to accelerate the decay and to mitigate orbital debris generated by non-operational CubeSats. The panel method is selected to determine the drag coefficient as a function of the flow incident angle and the spinning rate. The pressure distribution is integrated from the satellite faces at hypersonic rarefied flow to calculate the drag coefficient. The mathematical model considers the gravitational potential of the Earth and the deceleration due to drag. To analyze the effects of the rotation during the decay, multiple trajectories were propagated, comparing the results obtained assuming a constant drag coefficient with trajectories where the drag coefficient changes periodically. The initial perigees selected were lower than 400 km of altitude with eccentricities ranging from 0.00 to 0.02. Six values for the angular velocity were applied in the maneuver. The technique of rotating the spacecraft is an interesting solution to increase the orbit decay of a CubeSat without implementing additional de-orbit devices. Significant changes in the decay time are presented due to the increase of the mean drag coefficient calculated by the panel method, when the maneuver is applied, reducing the orbital lifetime, however the results are independent of the angular velocity of the satellite.  相似文献   

10.
In the framework of its space debris research activities ESA established an optical survey program to study the space debris environment at high altitudes, in particular in the geostationary ring and in the geostationary transfer orbit region. The Astronomical Institute of the University of Bern (AIUB) performs these surveys on behalf of ESA using ESA’s 1-m telescope in Tenerife. Regular observations were started in 1999 and are continued during about 120–140 nights per year. Results from these surveys revealed a substantial amount of space debris at high altitudes in the size range from 0.1 to 1 m. Several space debris populations with different dynamical properties were identified in the geostationary ring. During the searches for debris in the geostationary transfer orbit region a new population of objects in unexpected orbits, where no potential progenitors exist, was found. The orbital periods of these objects are clustered around one revolution per day; the eccentricities, however, are scattered between 0 and 0.6. By following-up some of these objects using the ESA telescope and AIUB’s 1-m telescope in Zimmerwald, Switzerland, it was possible to study the properties of this new population. One spectacular finding from monitoring the orbits over time spans of days to months is the fact that these objects must have extreme area-to-mass ratios, which are by several orders of magnitudes higher than for ‘normal-type’ debris. This in turn supports the hypothesis that the new population actually is debris generated in or near the geostationary ring and which is in orbits with periodically varying eccentricity and inclination due to perturbations by solar radiation pressure. In order to further study the nature of these debris, multi-color and temporal photometry (light curves) were acquired with the Zimmerwald telescope. The light curves show strong variations over short time intervals, including signals typical for specular reflections. Some objects exhibit distinct periodic variations with periods ranging from 10 to several 100 s. All this is indicative for objects with complicated shapes and some highly reflective surfaces.  相似文献   

11.
Missions to geosynchronous orbits remain one of the most important elements of space launch traffic, accounting for 40% of all missions to Earth orbit and beyond during the four-year period 2000–2003. The vast majority of these missions leave one or more objects in geosynchronous transfer orbits (GTOs), contributing on a short-term or long-term basis to the space debris population. National and international space debris mitigation guidelines seek to curtail the accumulation of debris in orbits which penetrate the regions of low Earth orbit and of geosynchronous orbit. The orbital lifetime of objects in GTO can be greatly influenced by the initial values of perigee, inclination, and right ascension of the orbital plane, leading to orbital lifetimes of from less than one month to more than 100 years. An examination of the characteristic GTOs employed by launch vehicles from around the world has been conducted. The consequences of using perigees above 300 km and super-synchronous apogees, typically above 40,000 km, have been identified. In addition, the differences in orbital behavior of launch vehicle stages and mission-related debris in GTOs have been investigated. Greater coordination and cooperation between space launch service providers and spacecraft designers and owners could significantly improve overall compliance with guidelines to mitigate the accumulation of debris in Earth orbit.  相似文献   

12.
Orbital potential field measurements are sensitive to regional variations in earth density and magnetization that occur over scales of a few hundred kilometers or greater. Global field models currently available are able to distinguish gravity variations of ±5 milligal over distances of ~1,000 km and magnetic variations of ±6 gamma over distances of ~300 km at the earth's surface. Regional variations in field strength have been detected in orbital measurements that are not apparent in higher resolution, low altitude surveys. NASA is presently studying a spacecraft mission known as GRAVSAT/MAGSAT, which would be the first satellite mission to perform a simultaneous survey of the earth's gravity and magnetic fields at low orbital altitudes. GRAVSAT/MAGSAT has been proposed for launch during the latter nineteen-eighties, and it would measure gravity field strength to an accuracy of 1 milligal and magnetic field strength to an accuracy of 2 gamma (scalar)/5 gamma (vector components) over a distance of roughly 100 km. Even greater improvements in the accuracy and spatial resolution of orbital surveys are anticipated during the nineteen-nineties with the development of potential field gradiometers and a tethered satellite system that can be deployed from the Space Shuttle to altitudes of 120 km above the earth's surface.  相似文献   

13.
A unique logic-based algorithm for atmospheric reentry hemisphere prediction is presented for spacecraft in low-eccentricity, prograde low Earth orbits at altitudes of 300 km and lower. Using two-line element (TLE) data for initial orbit conditions, coupled with coarse estimates for spacecraft aerodynamic characteristics, the algorithm relies on logical disjunction operations based on a dual analysis of histogram and two-weighted Gaussian probability density function (PDF) fits of predicted reentry latitude data. The algorithm requires the execution of a series of parametric simulations to determine the reentry hemisphere for variations in spacecraft aerodynamic coefficients and drag reference area. When implemented, the algorithm yields accurate hemisphere predictions on average 15 days from reentry as demonstrated by historical reentry cases from 1979 to 2018. All reentry cases were selected to demonstrate the algorithm’s ability to deliver accurate reentry hemisphere predictions for spacecraft with varying physical size and mass, and reentering during different periods of solar cycle activity.  相似文献   

14.
微流星体及空间碎片的高速撞击威胁着长寿命、大尺寸航天器的安全运行,导致其严重的损伤和灾难性的失效。为精确估计微流星体及空间碎片高速撞击防护屏所产生碎片云对舱壁的损伤,必须确定碎片云中三种状态材料的特性,建立了碎片云特性分析模型,分别计算了柱状弹丸撞击防护屏所产生碎片云以及碎片云中弹丸和防护屏材料三种状态物质的质量分布。通过计算分析可见,弹丸以不同速度撞击防护屏所产生碎片云三种状态物质的质量分布是不同的,速度增大,液化和气化增强,对靶件的损伤小。而在速度小于7km/s时,碎片云以固体碎片的形式存在,对靶件的损伤大。  相似文献   

15.
This paper introduces a mission concept for active removal of orbital debris based on the utilization of the CubeSat form factor. The CubeSat is deployed from a carrier spacecraft, known as a mothership, and is equipped with orbital and attitude control actuators to attach to the target debris, stabilize its attitude, and subsequently move the debris to a lower orbit where atmospheric drag is high enough for the bodies to burn up. The mass and orbit altitude of debris objects that are within the realms of the CubeSat’s propulsion capabilities are identified. The attitude control schemes for the detumbling and deorbiting phases of the mission are specified. The objective of the deorbiting maneuver is to decrease the semi-major axis of the debris orbit, at the fastest rate, from its initial value to a final value of about 6471?km (i.e., 100?km above Earth considering a circular orbit) via a continuous low-thrust orbital transfer. Two case studies are investigated to verify the performance of the deorbiter CubeSat during the detumbling and deorbiting phases of the mission. The baseline target debris used in the study are the decommissioned KOMPSAT-1 satellite and the Pegasus rocket body. The results show that the deorbiting times for the target debris are reduced significantly, from several decades to one or two years.  相似文献   

16.
Spacecraft that are launched to operate in Earth orbit are susceptible to impacts by meteoroids and pieces of orbital debris (MMOD). The effect of a MMOD particle impact on a spacecraft depends on where the impact occurs, the size, composition, and speed of the impacting object, the function of the impacted system. In order to perform a risk analysis for a particular spacecraft under a specific mission profile, it is important to know whether or not the impacting particle (or its remnants) will exit the rear of an impacted spacecraft wall. A variety of different ballistic limit equations (BLEs) have been developed for many different types of structural wall configurations. BLEs can be used to optimize the design of spacecraft wall parameters so that the resulting configuration is able to withstand the anticipated variety of on-orbit high-speed impact scenarios. While the level of effort exerted in studying the response of metallic multi-wall systems to high speed particle impact is quite substantial, the extent of the effort to study composite material and composite structural systems under similar impact conditions has been much more limited. This paper presents an overview of the activities performed to assess the resiliency of composite structures and materials under high speed projectile impact. The activities reviewed will be those that have been aimed at increasing the level of protection afforded to spacecraft operating in the MMOD environment, and more specifically, on those activities performed to mitigate the mechanical and structural effects of an MMOD impact.  相似文献   

17.
微流星及空间碎片的高速撞击威胁着长寿命,大尺寸航天器的安全运行,导致其严重的损伤和灾难性的失效,为精确估计微流星及空间碎片主速撞击防护屏产生的碎片对舱壁的损伤,必须确定碎片云速度特性。文章在冲量和能量守恒的基础上,建立了碎片速度性分析模型,研究了碎片云的速度特性,得到了碎片云材料传播及碎片云喷射角随弹丸撞击速度的变化规律。  相似文献   

18.
The processes leading to enhancements in mid latitude nitric oxide (NO) densities following geomagnetic storms have been investigated using the University College London (UCL) Coupled Middle Atmosphere and Thermosphere (CMAT) general circulation model. A comparison of calculated storm time and quiet time NO densities at 110 km altitude reveals the presence of aurorally produced NO at both high and mid latitudes for several days after subsidence of activity. At 150 km, the NO enhancements are shorter lived and remain for up to approximately 2 days after the storm. By separating the contribution of chemical production and loss, horizontal and vertical advection, and molecular and eddy diffusion in the calculation of NO densities, we show that at 150 km altitude, horizontal transport must be taken into consideration if post-storm mid latitude enhancements are to be reproduced. Chemical production of NO at high latitudes continues for up to 2 days after subsidence of a storm at altitudes of around 150 km. We show that equatorward winds at this altitude are sufficiently strong to transport the aurorally produced NO to mid latitudes. Vertical diffusion transports NO from altitudes of 150 km and above, to lower altitudes where it is longer lived. At 110 km altitude, chemical, diffusive and advective terms must all be included in the calculation of NO density in order to simulate realistic mid latitude enhancements. We propose that it is the combined effects of increased chemical production, downward diffusion from altitudes of 150 km and above, and transport by winds that lead to increases in mid latitude NO density at altitudes of around 110 km. This is the first detailed study of the causes of post-storm mid latitude NO enhancements to use a three-dimensional general circulation model.  相似文献   

19.
Space debris is polluting the space environment. Collision fragment is its important source. NASA standard breakup model, including size distributions, area-to-mass distributions, and delta velocity distributions, is a statistic experimental model used widely. The general algorithm based on the model is introduced. But this algorithm is difficult when debris quantity is more than hundreds or thousands. So a new faster algorithm for calculating debris cloud orbital lifetime and character from spacecraft collision breakup is presented first. For validating the faster algorithm, USA 193 satellite breakup event is simulated and compared with general algorithm. Contrast result indicates that calculation speed and efficiency of faster algorithm is very good. When debris size is in 0.01–0.05 m, the faster algorithm is almost a hundred times faster than general algorithm. And at the same time, its calculation precision is held well. The difference between corresponding orbital debris ratios from two algorithms is less than 1% generally.  相似文献   

20.
为了评估空间碎片超高速撞击航天器的碎片云破坏能力,挖掘超高速撞击数值模 拟结果数据的应用价值,基于9.53 mm铝球以6.64 km/s速度对2.2 mm铝靶撞 击的Ls-Dyna/SPH(Smoothed Particle Hydrodynamic)数值模拟研究结果,对靶后碎片云的 粒子动能进行求和统计,建立了碎片云比动能概念和函数形式;碎片云比动能综合考虑了靶 后所有碎片云粒子的动能,反映了一定距离处垂直于撞击方向平面上单位面积上的碎片云粒 子所蕴含的撞击能量;应用碎片云比动能概念,揭示出随着演化距离的增加,碎片云能量的 衰减规律;通过不同速度条件下的SPH计算,得到了碎片云的比动能函数的曲线形式随撞击 速度的变化规律;最后对采用2种材料模型进行数值模拟所对应的结果误差进行碎片云比动 能函数的曲线比较,反映出数值模拟中不同材料模型引起的差异.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号