首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Satellite autonomous navigation is an important function of the BeiDou-3 navigation System (BDS-3). Satellite autonomous navigation means that the navigation satellite uses long-term forecast ephemeris and Inter-Satellite Link (ISL) measurements to determinate its own spatial position and time reference without the support of the ground Operation and Control System (OCS) for a long time to ensure that the navigation system can normally maintain the time and space reference. This paper aims to analyze the feasibility of distributed autonomous navigation algorithms. For the first time, a ground parallel autonomous navigation test system (GPANTS) is built. The performance of distributed autonomous navigation is then analyzed using the two-way ISL ranging of BDS-3 satellites. First, the BDS simulation platform and the GPANTS are introduced. Then, the basic principles of distributed satellite autonomous orbit determination and time synchronization based on ISL measurements are summarized. Preliminary evaluation of the performance of the BDS-3 constellation autonomous navigation service under ideal conditions through simulation data. Then the performance of autonomous navigation for 22 BeiDou-3 satellites using ISL measurements is evaluated. The results show that when satellites operate autonomously for 50 days without the support of any ground station, the User Range Error (URE) of autonomous orbit determination is better than 3 m, and the time synchronization accuracy is better than 4 ns.  相似文献   

2.
The BeiDou navigation satellite system (BDS) comprises geostationary earth orbit (GEO) satellites as well as inclined geosynchronous orbit (IGSO) and medium earth orbit (MEO) satellites. Owing to their special orbital characteristics, GEO satellites require frequent orbital maneuvers to ensure that they operate in a specific orbital window. The availability of the entire system is affected during the maneuver period because service cannot be provided before the ephemeris is restored. In this study, based on the conventional dynamic orbit determination method for navigation satellites, multiple sets of instantaneous velocity pulses parameters which belong to one of pseudo-stochastic parameters were used to simulate the orbital maneuver process in the orbital maneuver arc and establish the observed and predicted orbits of the maneuvered and non-maneuvered satellites of BeiDou regional navigation satellite system (BDS-2) and BeiDou global navigation satellite system (BDS-3). Finally, the single point positioning (SPP) technology was used to verify the accuracy of the observed and predicted orbits. The orbit determination accuracy of maneuvered satellites can be greatly improved by using the orbit determination method proposed in this paper. The overlapping orbit determination accuracy of maneuvered GEO satellites of BDS-2 and BDS-3 can improve 2–3 orders of magnitude. Among them, the radial orbit determination accuracy of each maneuvered satellite is basically better than 1 m. simultaneously, the combined orbit determination of the maneuvered and non-maneuvered satellites does not have a great impact on the orbit determination accuracy of the non-maneuvered satellites. Compared with the multi GNSS products (indicated by GBM) from the German Research Centre for Geosciences (GFZ), the impact of adding the maneuvered satellites on the orbit determination accuracy of BDS-2 satellites is less than 9 %. Furthermore, the orbital recovery time and the service availability period are significantly improved. When the node of the predicted orbit is traversed approximately 3 h after the maneuver, the accuracy of the predicted orbit of the maneuvered satellite can reach that of the observed orbit. The SPP results for the BDS reached a normal level when the node of the predicted orbit was 2 h after the maneuver.  相似文献   

3.
基于单频星载GPS数据的低轨卫星精密定轨   总被引:1,自引:0,他引:1  
为满足搭载单频GPS接收机低轨卫星的精密定轨需求以及深化单频定轨研究,文中解决了单频星载GPS数据的周跳探测问题,并利用“海洋二号”(HY-2A)卫星及“资源三号”(ZY-3)卫星的单频星载GPS实测数据采用两种方法确定了二者的简化动力学轨道,并通过观测值残差分析、与双频精密轨道比较、激光测卫数据检核等方法对所得轨道精度进行评定。结果表明,在不考虑电离层延迟影响的情况下,HY-2A卫星定轨精度为2~3dm,ZY-3卫星为1m左右;而采用半和改正组合消除电离层延迟一阶项影响后,二者定轨精度均显著提高,HY-2A卫星三维精度提高至1dm左右,ZY-3卫星提高至1~2dm。文章的研究成果表明,搭载单频GPS接收机的低轨卫星也可获得厘米级的定轨精度。  相似文献   

4.
Within the Multi-GNSS Pilot Project (MGEX) of the International GNSS Service (IGS), precise orbit and clock products for the BeiDou-3 global navigation satellite system (BDS-3) are routinely generated by a total of five analysis centers. The processing standards and specific properties of the individual products are reviewed and the BDS-3 orbit and clock product performance is assessed through direct inter-comparison, satellite laser ranging (SLR) residuals, clock stability analysis, and precise point positioning solutions. The orbit consistency evaluated by the signal-in-space range error is on the level of 4–8 cm for the medium Earth orbit satellites whereas SLR residuals have RMS values between 3 and 9 cm. The clock analysis reveals sytematic effects related to the elevation of the Sun above the orbital plane for all ACs pointing to deficiencies in solar radiation pressure modeling. Nevertheless, precise point positioning with the BDS-3 MGEX orbit and clock products results in 3D RMS values between 7 and 8 mm.  相似文献   

5.
Autonomous satellite navigation is based on the ability of a Global Navigation Satellite System (GNSS), such as Beidou, to estimate orbits and clock parameters onboard satellites using Inter-Satellite Link (ISL) measurements instead of tracking data from a ground monitoring network. This paper focuses on the time synchronization of new-generation Beidou Navigation Satellite System (BDS) satellites equipped with an ISL payload. Two modes of Ka-band ISL measurements, Time Division Multiple Access (TDMA) mode and the continuous link mode, were used onboard these BDS satellites. Using a mathematical formulation for each measurement mode along with a derivation of the satellite clock offsets, geometric ranges from the dual one-way measurements were introduced. Then, pseudoranges and clock offsets were evaluated for the new-generation BDS satellites. The evaluation shows that the ranging accuracies of TDMA ISL and the continuous link are approximately 4?cm and 1?cm (root mean square, RMS), respectively. Both lead to ISL clock offset residuals of less than 0.3?ns (RMS). For further validation, time synchronization between these satellites to a ground control station keeping the systematic time in BDT was conducted using L-band Two-way Satellite Time Frequency Transfer (TWSTFT). System errors in the ISL measurements were calibrated by comparing the derived clock offsets with the TWSTFT. The standard deviations of the estimated ISL system errors are less than 0.3?ns, and the calibrated ISL clock parameters are consistent with that of the L-band TWSTFT. For the regional BDS network, the addition of ISL measurements for medium orbit (MEO) BDS satellites increased the clock tracking coverage by more than 40% for each orbital revolution. As a result, the clock predicting error for the satellite M1S was improved from 3.59 to 0.86?ns (RMS), and the predicting error of the satellite M2S was improved from 1.94 to 0.57?ns (RMS), which is a significant improvement by a factor of 3–4.  相似文献   

6.
The FY3C and FY3D satellites were equipped with global navigation satellite occultation detector (GNOS) receivers that received both GPS and BDS-2 signals. For further improving precise orbit determination (POD) precisions, we estimated receiver GPS and BDS signal phase center variations (PCV) models with 2° and 5° resolutions and set the different weights for GPS and BDS-2 observations in the combined POD. The BDS-based POD precision using BDS-2 satellite antenna phase center offset (PCO) values from the China Satellite Navigation Office (CSNO) are not as accurate as those obtained from the International GNSS Service (IGS) Multi-GNSS experiments project (MGEX). The estimated receiver GPS and BDS PCV models with 2° and 5° resolutions were estimated from the GPS phase residuals of GPS-based POD and BDS phase residuals of combined POD, respectively. In most cases, the POD precisions using the estimated PCVs with 2° resolution are superior to those with 5° resolution. The precisions of the BDS-based POD and combined POD were both improved by introducing the receiver BDS PCV models. The weighting for GPS and BDS-2 observations can further improve the precision of the combined POD. The tested results of selected weights are better than those with equal weight in the combined POD. The experiment results show that orbital precisions of FY3C are worse than those of FY3D.  相似文献   

7.
在转发式卫星测定轨系统中,基于伪码测距原理的星地距离测量是实现卫星精密定轨和高精度时间比对的基础。为获得高精度的星地距离,需要将地面站设备时延从伪码测距值中精确扣除。在转发式卫星测轨原理的基础上,提出了基于移动站的转发式地面站设备时延标校方法,实现了对转发式地面站设备时延的标校,标校精度能够优于0.5ns,对提高转发式卫星定轨精度和卫星双向时间比对精度具有重要作用。  相似文献   

8.
On December 27, 2018, the Beidou-3 System (BDS-3) has completed the deployment of 18 Medium Earth Orbit (MEO) satellites combined as a space constellation. In addition to the augmentation information for the new system signals B1C and B2a, the BDS-3 is compatible with the three augmentation information broadcast by the BDS-2 system for B1I and B3I signals: equivalent clock error correction, User Differential Ranging Error (UDRE) and Grid Ionosphere Vertical Error (GIVE). In this paper, the observation data of Beidou monitoring network are used to analyze the pseudo-range observation quality of the smooth transition signals B1I and B3I of BDS-2 and BDS-3. At the same time, the relationship between the equivalent clock error correction and the prediction error of the satellite clock is analyzed by using the Two-Way Satellite Time and Frequency Transfer (TWSTFT) data. The results show that the correlation between the equivalent clock error correction and the monitored clock error by using the TWSTFT data is greater than 60%. We calculate the UDRE by using the equivalent clock error correction. The results show that the satellite equivalent clock error correction can improve the accuracy of User Equivalent Range Error (UERE) by about 50%. This paper also compares the positioning accuracy of the BDS-2 satellites with the BDS-2 satellites combined BDS-3 satellites. The results show that the three-dimensional positioning accuracy is improved by about 30% after the BDS-3 satellites are added.  相似文献   

9.
针对风云四号同步卫星的精密定轨和精度评估需求,首先利用地面光学测角数据对FY-4A卫星进行精密定轨,定轨后方位角和高度角的残差rms分别为0.25"和0.45"。与基于测距数据的轨道相比,位置精度在有测角数据的弧段内小于50m。进一步联合测角数据和测距数据对FY-4A卫星进行联合定轨,定轨后轨道重叠精度优于15m。利用联合定轨结果评估了基于测距数据的实时轨道产品精度,可以明显发现轨道精度随着测距数据的积累而逐步提高。  相似文献   

10.
In the framework of space debris, the orbit determination process is a fundamental step, both, for researchers and for satellite operators. The accurate knowledge of the orbit of space debris objects is needed to allow space debris characterization studies and to avoid unnecessary collision avoidance maneuvers.The accuracy of the results of an orbit determination process depends on several factors as the number, the accuracy, the kind of processed measurements, their distribution along the orbit, and the object-observer relative geometry. When the observation coverage of the target orbit is not homogeneous, the accuracy of the orbit determination can be improved processing different kind of observables. Recent studies showed that the satellite laser ranging technique can be successfully applied to space debris.In this paper, we will investigate the benefits of using laser ranges and angular measurements for the orbit determination process. We will analyze the influence of the number of used observations, of the covered arc of orbit, of each observable, and of the observation geometry on the estimated parameters. Finally, using data acquired on short observation arcs, we analyze the achievable accuracies for the orbital regimes with the highest space debris density, and to the consequences of the data fusion on catalog maintenance operations. The results shown are obtained using only real data (both angular and laser measurements) provided by sensors of the Swiss Optical Ground Station and Geodynamics Observatory Zimmerwald owned by the Astronomical Institute of the University of Bern (AIUB) and for some studies also using ranges provided from other stations of the International Laser Ranging Service (ILRS).  相似文献   

11.
由低轨LEO(Low Earth Orbit)和中轨MEO(Medium Earth Orbit)卫星构成的双层卫星网络具有较好的组网通信性能.利用MEO和LEO卫星在长、短距通信中的优势,提出一种分层、分布式的双层卫星网动态路由算法.通过控制链路状态信息的洪泛,LEO卫星只需掌握局部拓扑即可完成短距业务通信,长距通信业务则由MEO卫星承载.将星间链路的剩余生存时间因素引入路径权重中,路由计算的路径是综合考虑了时延与持续时间双重因素的最优路径.仿真结果表明该算法在时延、路由开销、网络业务流分布等方面都具有较好的性能,并且易于系统实现.   相似文献   

12.
To realize the smooth transition from regional BeiDou Navigation Satellite System (BDS-2) to the global one (BDS-3), the integration of BDS-2 and BDS-3 is important for providing continuous, stable and reliable positioning, navigation and timing (PNT) services for global users. This work used 154 globally distributed multi-GNSS (Global Navigation Satellite System) experiment stations spanning 30 days to analyze the satellite availability and positioning performance of uncombined precise point positioning (UC-PPP) under current BDS-2 and BDS-3 constellations. We focused on three issues: the influence of BDS-3 receiver tracking abilities, the positioning performance among different areas, and the benefit of multi-frequency observations. The results show that the elliptical zone caused by poor BDS-2 satellite visibility is disappeared when the evenly distributed BDS-3 medium earth orbit satellites are introduced. When BDS-3 are integrated with BDS-2, the area with the Position Dilution of Precision (PDOP) less than 2 can be expanded to 75° S-75° N and 30° E-150° W. The positioning performance of BDS-3 and BDS-2/BDS-3 UC-PPP are seriously affected by the receiver tracking abilities of BDS-3 signals. When the maximum pseudo-random noise sequences (PRNs) of BDS-3 satellites tracked by stations are within 30 or 37, the positioning accuracy of static UC-PPP can be improved by 22.94% or 8.27% due to the integration of BDS-2 and BDS-3. Besides, the most improvement of BDS-2 and BDS-3 integration is achieved in Asia-Pacific regions, especially for the kinematic UC-PPP or the poor receiver tracking abilities of BDS-3. Similar to the multi-frequency BDS-2 UC-PPP, the benefit of multi-frequency signals for BDS-3 or BDS-2/BDS-3 UC-PPP is also non-vital. The three-dimensional positioning accuracy of BDS-2/BDS-3 multi-frequency UC-PPP in static mode and kinematic mode are 2.24 cm and 5.39 cm, while the corresponding convergence time are 49.62 min and 73.80 min, respectively. Compared with BDS-2, both the positioning accuracy and the convergence time of BDS-2/BDS-3 joint UC-PPP are improved by approximately over 50%, which indicates that BDS-3 has a great potential to provide high-quality PNT services as other global navigation satellite systems.  相似文献   

13.
As has been demonstrated recently, inter-satellite Ka-band tracking data collected by the GRAIL (Gravity Recovery And Interior Laboratory) spacecraft have the potential to improve the resolution and accuracy of the lunar gravity field by several orders of magnitude compared to previous models. By means of a series of simulation studies, here we investigate the contribution of inter-satellite ranging for the recovery of the Moon’s gravitational features; the evaluation of results is made against findings from ground-based Doppler tracking. For this purpose we make use of classical dynamic orbit determination, supported by the analysis of satellite-to-satellite tracking observations. This study sheds particularly light on the influence of the angular distance between the two satellites, solar radiation modeling and the co-estimation of the lunar Love number k2. The quality of the obtained results is assessed by gravity field power spectra, gravity anomalies and precision orbit determination. We expect our simulation results to be supportive for the processing of real GRAIL data.  相似文献   

14.
Current precise point positioning (PPP) techniques are mainly based on GPS which has been extensively investigated. With the increase of available GLONASS satellites during its revitalization, GLONASS observations were increasingly integrated into GPS-based PPP. Now that GLONASS has reached its full constellation, there will be a wide interest in PPP systems based on only GLONASS since it provides a PPP implementation independent of GPS. An investigation of GLONASS-based PPP will also help the development of GPS and GLONASS combined PPP techniques for improved precision and reliability. This paper presents an observation model for GLONASS-based PPP in which the GLONASS hardware delay biases are addressed. In view of frequently changed frequency channel number (FCN) for GLONASS satellites, an algorithm has been developed to compute the FCN for GLONASS satellites using code and phase observations, which avoids the need to provide the GLONASS frequency channel information during data processing. The observation residuals from GLONASS-based PPP are analyzed and compared to those from GPS-based PPP. The performance of GLONASS-based PPP is assessed using data from 15 globally distributed stations.  相似文献   

15.
By introducing inter-satellite link (ISL), the dependence of the global navigation satellite system (GNSS) on ground infrastructure can be reduced and its performance enhanced via inter-satellite ranging and communication. Owing to platform restrictions, there are usually fewer onboard Ka-band ISL antennas than the number of visible satellites, which poses a problem when optimizing the inter-satellite links assignment of the GNSS. In this study, to optimize inter-satellite ranging and communication, a multi-objective optimization model is built and a scheduling strategy is proposed for the inter-satellite links assignment scheduling problem. The position dilution of precision (PDOP) of links and the transmission time-delay of telemetry data are set as the ranging performance and communication metrics, respectively. We regard the links assignment in each slot as a general graph-matching problem, and apply the Blossom algorithm to obtain the maximum matching. We then generate and optimize the satellite sequences for whole slots using non-dominated sorting genetic algorithm II (NSGA-II). The simulation scenes include 10,080 epochs of GNSS constellation, and the simulation results show that the performance of the proposed strategy is better than that of other methods published recently, and can provide various solutions to meet the different preferences of system managers.  相似文献   

16.
X射线脉冲星导航1号(XPNAV-1)是全球首颗脉冲星导航专用试验卫星。利用该卫星观测的单颗脉冲星数据,采用几何约束方法,能够有效抑制轨道误差增长,但存在长时间定轨发散问题。针对XPNAV-1卫星拓展试验任务及脉冲星导航后续发展需求,利用多颗脉冲星的观测数据,研究基于扩展卡尔曼滤波(EKF)的卫星自主定轨算法。首先,建立该卫星的轨道力学模型和观测方程;然后,详细论述EKF滤波算法和分段式定常系统(PWCS)的可观测性分析方法;最后,通过综合分析XPNAV-1卫星的观测数据、脉冲星对该卫星轨道的覆盖性以及系统状态的可观测性,进行自主定轨算法试验。试验结果表明,基于EKF的自主定轨算法滤波过程收敛,验证了该算法的合理性和有效性。  相似文献   

17.
连线端站干涉测量(connected element interferometry,CEI)是高精度测角技术,在中高轨卫星、月球及深空航天器定轨定位中有良好的应用前景。基于CEI技术特点,提出了一种新的测量方法,即在相干测距模式下利用测距音和载波信号作为信号源进行连线端站干涉测量。构建了CEI试验系统对北斗GEO卫星进行观测,利用相干测距模式下的下行信号解算群时延、相时延。利用北斗GEO卫星精密星历计算的时延理论值,对北斗GEO卫星CEI群时延和相时延结果进行评估。结果表明,相干测距模式下CEI群时延和相时延残差均值分别为0.47ns、0.08ns,标准差(3σ)分别4.2ns、0.13ns。该项研究验证了相干测距模式下CEI相时延解算的可行性,可为共位地球同步卫星精密相对定位、月球探测器CEI测量提供技术参考。  相似文献   

18.
The Global Navigation Satellite System (GNSS) receivers equipped on the Haiyang-2D (HY-2D) satellite is capable of tracking the signals of both the third generation of BeiDou satellite navigation System (BDS-3) and the Global Positioning System (GPS), which make it feasible to assess the performance of real-time orbit determination (RTOD) for the HY-2D using onboard GNSS observations. In this study, the achievable accuracy and convergence time of RTOD for the HY-2D using onboard BDS-3 and GPS observations are analyzed. Benefiting from the binary-offset-carrier (BOC) modulation, the BDS-3 C1X signal includes less noise than the GPS C1C signal, which has the same signal frequency and chipping rate. The root mean squares (RMS) of the noises of C1X and C1C code measurements are 0.579 m and 1.636 m, respectively. Thanks to a ten-times higher chipping rate, the code measurements of BDS-3 C5P, GPS C1W and C2W are less noisy. The RMS of code noises of BDS-3 C5P, GPS C1W, and C2W are 0.044 m, 0.386 m, and 0.272 m, respectively. For the HY-2D orbit, the three-dimensional (3D) and radial accuracies can reach 31.8 cm and 7.5 cm with only BDS-3 observations, around 50 % better than the corresponding accuracies with GPS. Better performance of the BDS-3 in RTOD for the HY-2D is attributed to the high quality of its broadcast ephemeris. When random parameters are used to absorb ephemeris errors, substantial improvement is seen in the accuracy of HY-2D orbit with either BDS-3 or GPS. The 3D RMS of HY-2D orbit errors with BDS-3 and GPS are enhanced to 23.1 cm and 33.6 cm, and the RMS of the radial components are improved to 6.1 cm and 13.3 cm, respectively. The convergence time is 41.6 and 75.5 min for the RTOD with BDS-3 and GPS, while it is reduced to 39.2 and 27.4 min after the broadcast ephemeris errors are absorbed by random parameters. Overall, the achievable accuracy of RTOD with BDS-3 reaches decimeter level, which is even better than that with GPS, making real-time navigation using onboard BDS-3 observations a feasible choice for future remote sensing missions.  相似文献   

19.
地基光电观测在同步轨道目标监测领域具有重要作用.为评估单站光电设备对同步轨道目标的实际测定轨能力,利用上海天文台佘山站1.56m望远镜,采用CCD漂移扫描光电技术,对3颗北斗同步卫星开展试验观测,基于卫星精密星历评估目标的测定轨外符精度.结果表明:同步轨道目标的天文定位在方位和俯仰方向上的外符精度均好于0.3";在单圈次观测情况下,尽管轨道预报精度较低,约为数千米量级,但是观测弧段内定轨精度可优于百米;在多圈次观测情况下,轨道改进效果显著,定轨精度优于50m,外推至4d的轨道预报精度为百米量级.此外,定量评估了每晚不同观测时间跨度下同步轨道目标的测定轨精度,为单站光电设备实际应用提供了参考.   相似文献   

20.
导航星座轨道的长期保持是星座导航系统运营管理的重要组成部分,而现有的导航卫星地面定轨算法又存在精度不高或计算量大不适合工程应用的问题。为此,研究了单向、被动测量模式的导航卫星地面定轨算法。基于单向伪距观测,将导航卫星钟差参数作为状态量,推导了滤波算法的状态方程、测量方程,并最终建立了滤波器模型。以不同轨道面的4颗GPS导航卫星为例进行了2天的仿真试验,考虑卫星的可见性仿真中加入了测量中断,并设计在测量恢复后重启滤波算法。仿真结果表明,4颗卫星的轨道位置估计精度可以达到米级,钟差随机偏差的估计精度可以达到纳秒级,并且在滤波中断后重启滤波器,仍然可以达到此估计精度,表明此定轨算法具有收敛性和稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号