首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In light of the rapidly growing New Space Economy, the landscape of space exploration and development activities will certainly become much more complicated year by year. Relevant commercial space actors have already emerged, pushing the boundaries of entrepreneurial space ventures beyond the Earth-oriented upstream and downstream market segments and opening up the path towards the novel segments of space exploration, space resources utilization, and space research. Planetary protection is usually defined as a set of guidelines concerning the avoidance of bidirectional biological material exchange between the Earth and other celestial bodies. Recent success stories of established and new-entrant NewSpace actors, although posing no realistic planetary protection threat at present, clearly indicate that serious work needs to be done in order for the relevant guidelines to keep up with the rapid advances of the technology development cycles that occur within NewSpace companies. This need may become even more urgent, as space entrepreneurs acquire and develop the resources and competencies to target the currently underserved market segments of space research, exploration, and utilization. As of now, these capabilities were maintained solely by public space agencies; thus, all planetary protection priorities, strategies, and responsibilities were discussed, agreed-upon, and delegated for implementation among national and international working groups of public stakeholders. Although top-down regulations can be effective in controlling the quality and conformity of the deliverables of private subcontractors to public contractors, international planetary protection frameworks might need to evolve even beyond such unmet public-private interaction and partnership models. For this reason, this study did not focus on the legal and political issues of mandating NewSpace actors to adhere to planetary protection guidelines; rather, drawing from the field of sustainable development on Earth, an environmental economics approach was followed, with the goal of viewing the relationship between planetary protection and private space exploration and development as another “tragedy of the commons” problem that must be settled accordingly. After the problem’s framing, i.e. the conceptual presentation and synthesis of four extraterrestrial non-excludable goods, the initial approach of their total economic value, and the negative externalities of their exploitation, a discussion of the forward contamination mitigation costs was conducted. Drawing from the literature and using examples from both the terrestrial and aerospace sectors, a pre-emptive move was suggested: the establishment of a global industry consortium for the pre-competitive collaboration in forward contamination mitigation technologies, centered on an international planetary protection analogue program and its respective testbed facility.  相似文献   

2.
Toward a global space exploration program: A stepping stone approach   总被引:1,自引:0,他引:1  
In response to the growing importance of space exploration in future planning, the Committee on Space Research (COSPAR) Panel on Exploration (PEX) was chartered to provide independent scientific advice to support the development of exploration programs and to safeguard the potential scientific assets of solar system objects. In this report, PEX elaborates a stepwise approach to achieve a new level of space cooperation that can help develop world-wide capabilities in space science and exploration and support a transition that will lead to a global space exploration program. The proposed stepping stones are intended to transcend cross-cultural barriers, leading to the development of technical interfaces and shared legal frameworks and fostering coordination and cooperation on a broad front. Input for this report was drawn from expertise provided by COSPAR Associates within the international community and via the contacts they maintain in various scientific entities. The report provides a summary and synthesis of science roadmaps and recommendations for planetary exploration produced by many national and international working groups, aiming to encourage and exploit synergies among similar programs. While science and technology represent the core and, often, the drivers for space exploration, several other disciplines and their stakeholders (Earth science, space law, and others) should be more robustly interlinked and involved than they have been to date. The report argues that a shared vision is crucial to this linkage, and to providing a direction that enables new countries and stakeholders to join and engage in the overall space exploration effort. Building a basic space technology capacity within a wider range of countries, ensuring new actors in space act responsibly, and increasing public awareness and engagement are concrete steps that can provide a broader interest in space exploration, worldwide, and build a solid basis for program sustainability. By engaging developing countries and emerging space nations in an international space exploration program, it will be possible to create a critical bottom-up support structure to support program continuity in the development and execution of future global space exploration frameworks. With a focus on stepping stones, COSPAR can support a global space exploration program that stimulates scientists in current and emerging spacefaring nations, and that will invite those in developing countries to participate—pursuing research aimed at answering outstanding questions about the origins and evolution of our solar system and life on Earth (and possibly elsewhere). COSPAR, in cooperation with national and international science foundations and space-related organizations, will advocate this stepping stone approach to enhance future cooperative space exploration efforts.  相似文献   

3.
Mars Sample Return (MSR) represents an important scientific goal in space exploration. Any sample return mission will be extremely challenging from a scientific, economic and technical standpoint. But equally testing, will be communicating with a public that may have a very different perception of the mission. A MSR mission will generate international publicity and it is vital that NASA acknowledge the nature and extent of public concern about the mission risks and, perhaps equally importantly, the public’s confidence in NASA’s ability to prepare for and manage these risks. This study investigated the level of trust in NASA in an Australian population sample, and whether this trust was dependent on demographic variables. Participants completed an online survey that explored their attitudes towards NASA and a MSR mission. The results suggested that people believe NASA will complete the mission successfully but have doubts as to whether NASA will be honest when communicating with the public. The most significant finding to emerge from this study was that confidence in NASA was significantly (p < 0.05) related to the respondent’s level of knowledge regarding the risks and benefits of MSR. These results have important implications for risk management and communication.  相似文献   

4.
What hazards might biological contamination pose to planets, comets and other celestial bodies visited by probes launched from Earth? What hazards might returning probes pose to Earth and its inhabitants? What should be considered an acceptable level of risk? What technologies, procedures and constraints should be applied? What sort of attitude has to be chosen concerning human crews, who themselves could become both contaminated victims and contaminating agents? The vast issue of planetary protection must, more than ever, spark ethical debate. Space treaty, COSPAR recommendations offer borders and context for this reflection, which has to be introduced in the actual humanist: never has been anthropocentrism so practical and concerned, in the same time, by the next generations, because of the historical character of life. At least an ethics of risk is necessary (far from the myth of zero-risk) for all the three types of contamination: other celestial bodies (forward contamination), Earth (backward contamination) and astronauts.  相似文献   

5.
    
The pace of scientific exploration of our solar system provides ever-increasing insights into potentially habitable environments, and associated concerns for their contamination by Earth organisms. Biological and organic-chemical contamination has been extensively considered by the COSPAR Panel on Planetary Protection (PPP) and has resulted in the internationally recognized regulations to which spacefaring nations adhere, and which have been in place for 40 years. The only successful Mars lander missions with system-level “sterilization” were the Viking landers in the 1970s. Since then different cleanliness requirements have been applied to spacecraft based on their destination, mission type, and scientific objectives. The Planetary Protection Subcommittee of the NASA Advisory Council has noted that a strategic Research & Technology Development (R&TD) roadmap would be very beneficial to encourage the timely availability of effective tools and methodologies to implement planetary protection requirements. New research avenues in planetary protection for ambitious future exploration missions can best be served by developing an over-arching program that integrates capability-driven developments with mission-driven implementation efforts. This paper analyzes the current status concerning microbial reduction and cleaning methods, recontamination control and bio-barriers, operational analysis methods, and addresses concepts for human exploration. Crosscutting research and support activities are discussed and a rationale for a Strategic Planetary Protection R&TD Roadmap is outlined. Such a roadmap for planetary protection provides a forum for strategic planning and will help to enable the next phases of solar system exploration.  相似文献   

6.
This paper describes the rationale, methodology, and importance of focusing on the rim and proximal ejecta of small (<5 km in diameter), immature impact craters to explore an underlying crustal lithology. Small Crater Rim and Ejecta Probing (SCREP) describes a methodology and application program that extracts bedrock spectral and compositional information from a remote sensing image. Extracted data can yield the pristine lithologies of a planetary crust that would otherwise be obscured by the products of space weathering processes. SCREP was developed with lunar data, specifically Clementine multispectral image mosaics, therefore the technique is discussed in this context. However, its application to other airless solar system bodies is apparent. Knowledge of the pristine bedrock compositions of a planetary crust provides insight into geological surface processes, which can be used to refine models of planetary interiors and their evolution.  相似文献   

7.
  总被引:1,自引:0,他引:1  
The Jet Propulsion Laboratory (JPL), in conjunction with the NASA Planetary Protection Officer, has selected vapor phase hydrogen peroxide (VHP) sterilization process for continued development as a NASA approved sterilization technique for spacecraft subsystems and systems. The goal was to include this technique, with an appropriate specification, in NASA Procedural Requirements 8020.12 as a low-temperature complementary technique to the dry heat sterilization process.  相似文献   

8.
The next time humans set foot on the Moon or another planet, will we treat the crew like we would a sample return mission when they come back to Earth? This may seem a surprising or even provocative question, but it is one we need to address. The hurdles and hazards of sending humans to Mars – for example, the technology constraints and physiological and psychological challenges – are many; but let us not forget the need to protect populations and environments from the risk of contamination [United Nations, treaty on principles governing the activities of states in the exploration and use of outer space, including the Moon and other celestial bodies (the “Outer Space Treaty”) referenced 610 UNTS 205 - resolution 2222(XXI) of December 1966].  相似文献   

9.
For the purposes of planetary protection, a series of experiments were performed to answer a long-standing question about the potential of bacterial contamination of interplanetary spacecraft from liquid hydrazine. Spores of Bacillus atrophaeus (ATCC No. 9372, also known as Bacillus subtilis var. niger, and BSN) were exposed to hydrazine and survivors were enumerated using the NASA standard planetary protection pour plate assay. Results indicate that bulk hydrazine rocket propellant may be considered free of living bacterial cells for planetary protection compliance.  相似文献   

10.
We present a concept for a challenging in situ science mission to a primitive, binary near-Earth asteroid. A sub-400-kg spacecraft would use solar electric propulsion to rendezvous with the C-class binary asteroid (175706) 1996 FG3. A campaign of remote observations of both worlds would be followed by landing on the ∼1 km diameter primary to perform in situ measurements. The total available payload mass would be around 34 kg, allowing a wide range of measurement objectives to be addressed. This mission arose during 2004 from the activities of the ad-hoc Small Bodies Group of the DLR-led Planetary Lander Initiative. Although the particular mission scenario proposed here was not studied further per se, the experience was carried over to subsequent European asteroid mission studies, including first LEONARD and now the Marco Polo near-Earth asteroid sample return proposal for ESA’s Cosmic Vision programme. This paper may thus be of interest as much for insight into the life cycle of mission proposals as for the concept itself.  相似文献   

11.
Jupiter’s icy moon Europa is one of most promising places in our Solar System where possible extraterrestrial life forms could exist either in the past or even presently. The Europa Lander mission, an exciting part of the international Europa Jupiter System Mission (EJSM/Laplace), considers in situ planetary exploration of the moon. The distance of Europa from the Earth and the Sun asks for autonomous analytical tools that maximize the scientific return at minimal resources, demanding new experimental concepts. We propose a novel instrument, based on the atomic spectroscopy of laser generated plasmas for the elemental analysis of Europa’s surface materials as far as it is in reach of the lander for example by a robotic arm or a mole, or just onboard the lander. The technique of laser-induced plasma spectrometry provides quantitative elemental analysis of all major and many trace elements. It is a fast technique, i.e. an analysis can be performed in a few seconds, which can be applied to many different types of material such as ice, dust or rocks and it does not require any sample preparation. The sensitivity is in the range of tens of ppm and high lateral resolution, down to 50 μm, is feasible. In addition, it provides the potential of depth profiling, up to 2 mm in rock material and up to a few cm in more transparent icy matrices. Key components of the instrument are presently developed in Germany for planetary in situ missions. This development program is accompanied by an in-depth methodical investigation of this technique under planetary environmental conditions.  相似文献   

12.
We describe a Mars ‘Micro Mission’ for detailed study of the martian satellites Phobos and Deimos. The mission involves two ∼330 kg spacecraft equipped with solar electric propulsion to reach Mars orbit. The two spacecraft are stacked for launch: an orbiter for remote investigation of the moons and in situ studies of their environment in Mars orbit, and another carrying a lander for in situ measurements on the surface of Phobos (or alternatively Deimos). Phobos and Deimos remain only partially studied, and Deimos less well than Phobos. Mars has almost always been the primary mission objective, while the more dedicated Phobos project (1988–89) failed to realise its full potential. Many questions remain concerning the moons’ origins, evolution, physical nature and composition. Current missions, such as Mars Express, are extending our knowledge of Phobos in some areas but largely neglect Deimos. The objectives of M-PADS focus on: origins and evolution, interactions with Mars, volatiles and interiors, surface features, and differences. The consequent measurement requirements imply both landed and remote sensing payloads. M-PADS is expected to accommodate a 60 kg orbital payload and a 16 kg lander payload. M-PADS resulted from a BNSC-funded study carried out in 2003 to define candidate Mars Micro Mission concepts for ESA’s Aurora programme.  相似文献   

13.
    
In the coming decades the detection of Earth-like extrasolar planets, either apparently lifeless or exhibiting spectral signatures of life, will encourage design studies for craft to visit them. These missions will require the elaboration of an interstellar planetary protection protocol. Given a specific dose required to sterilize microorganisms on a spacecraft, a critical mean velocity can be determined below which a craft becomes self-sterilizing. This velocity is calculated to be below velocities previously projected for interstellar missions, suggesting that an active sterilization protocol prior to launch might be required. Given uncertainties in the surface conditions of a destination extrasolar planet, particularly at microscopic scales, the potential for unknown biochemistries and biologies elsewhere, or the possible inoculation of a lifeless planet that is habitable, then both lander and orbiter interstellar missions should be completely free of all viable organisms, necessitating a planetary protection approach applied to orbiters and landers bound for star systems with unknown local conditions for habitability. I discuss the case of existing craft on interstellar trajectories – Pioneer 10, 11 and Voyager 1 and 2.  相似文献   

14.
United Nations Space Treaties [10 and 11] require the preservation of planets and of Earth from contamination. All nations part to these Treaties shall take measures to prevent forward and backward contamination during missions exploring our solar system. As observer for the United Nations Committee on Peaceful Uses of Outer Space, the COSPAR (Committee of Space Research) defines and handles the applicable policy and proposes recommendations to Space Agencies [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005. http://www.cosparhq.org/scistr/PPPolicy.htm.]. The goal is to protect celestial bodies from terrestrial biological contamination as well as to protect the Earth environment from an eventual biohazard which may be carried by extraterrestrial samples or by space systems returning to Earth. According to the applicable specifications, including in our case the French requirements [CNES, System Safety. Planetary Protection Requirements. Normative referential CNES RNC-CNES-R-14, CNES Toulouse, ed. 4, 04 October 2002.], the prevention of forward contamination is accomplished by reducing the bioburden on space hardware to acceptable, prescribed levels, including in some instances system sterilization, assembling and integrating the appropriate spacecraft systems in cleanrooms of appropriate biological cleanliness, avoiding or controlling any recontamination risk, and limiting the probability impact of space systems. In order to prepare for future exploration missions [Debus, A., Planetary protection: organization requirements and needs for future planetary exploration missions, ESA conference publication SP-543, pp 103–114, 2003.], and in particular for missions to Mars requiring to control the spacecraft bioburden, a test program has been developed to evaluate the biological contamination under the fairing of the Ariane 5 launcher.  相似文献   

15.
Analyses of the epidemiological data on the Japanese A-bomb survivors, who were exposed to γ-rays and neutrons, provide most current information on the dose–response of radiation-induced cancer. Since the dose span of main interest is usually between 0 and 1 Gy, for radiation protection purposes, the analysis of the A-bomb survivors is often focused on this range. However, estimates of cancer risk for doses larger than 1 Gy are becoming more important for long-term manned space missions. Therefore in this work, emphasis is placed on doses larger than 1 Gy with respect to radiation-induced solid cancer and leukemia mortality. The present analysis of the A-bomb survivors data was extended by including two extra high-dose categories and applying organ-averaged dose instead of the colon-weighted dose. In addition, since there are some recent indications for a high neutron dose contribution, the data were fitted separately for three different values for the relative biological effectiveness (RBE) of the neutrons (10, 35 and 100) and a variable RBE as a function of dose. The data were fitted using a linear and a linear-exponential dose–response relationship using a dose and dose-rate effectiveness factor (DDREF) of both one and two. The work presented here implies that the use of organ-averaged dose, a dose-dependent neutron RBE and the bending-over of the dose–response relationship for radiation-induced cancer could result in a reduction of radiation risk by around 50% above 1 Gy. This could impact radiation risk estimates for space crews on long-term mission above 500 days who might be exposed to doses above 1 Gy. The consequence of using a DDREF of one instead of two increases cancer risk by about 40% and would therefore balance the risk decrease described above.  相似文献   

16.
对2023年3月美国国家航空航天局(NASA)发布的2024财年预算申请进行分析和梳理。分析了NASA在2024财年预算概况以及深空探索系统、空间运行、空间技术、科学领域的重点部署情况。研究并讨论了NASA 2024财年预算案积极响应NASA最新战略规划,预算案对重要领域的重大影响,美国严峻通胀态势以及预算不确定性对NASA未来发展走向的潜在影响等关键问题。  相似文献   

17.
考虑了地球附近的彗星、行星环、行星际介质等空间尘埃等离子体环境中尘埃颗粒的充电问题.应用典型的空间尘埃等离子体参数,计算了不同种类的尘埃颗粒,以及不同等离子体成分下等离子体中尘粒的平衡电势,得到了尘埃颗粒的平衡电势与尘埃等离子体成分、温度,及其他等离子体参数之间的相互关系.  相似文献   

18.
    
In accordance with the United Nations Outer Space Treaties [United Nations, Agreement Governing the Activities of States on the Moon and Other Celestial Bodies, UN doc A/RES/34/68, resolution 38/68 of December 1979], currently maintained and promulgated by the Committee on Space Research [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005, http://www.cosparhq.org/scistr/PPPolicy.htm], missions exploring the Solar system must meet planetary protection requirements. Planetary protection aims to protect celestial bodies from terrestrial contamination and to protect the Earth environment from potential biological contamination carried by returned samples or space systems that have been in contact with an extraterrestrial environment. From an exobiology perspective, Mars is one of the major targets, and several missions are currently in operation, in transit, or scheduled for its exploration. Some of them include payloads dedicated to the detection of life or traces of life. The next step, over the coming years, will be to return samples from Mars to Earth, with a view to increasing our knowledge in preparation for the first manned mission that is likely to take place within the next few decades. Robotic missions to Mars shall meet planetary protection specifications, currently well documented, and planetary protection programs are implemented in a very reliable manner given that experience in the field spans some 40 years. With regards to sample return missions, a set of stringent requirements has been approved by COSPAR [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005, http://www.cosparhq.org/scistr/PPPolicy.htm], and technical challenges must now be overcome in order to preserve the Earth’s biosphere from any eventual contamination risk. In addition to the human dimension of the mission, sending astronauts to Mars will entail meeting all these constraints. Astronauts present huge sources of contamination for Mars and are also potential carriers of biohazardous material on their return to Earth. If they were to have the misfortune of being contaminated, they themselves would become a biohazard, and, as a consequence, in addition to the technical constraints, human and ethical considerations must also be taken into account.  相似文献   

19.
In August 2005 NASA launched a large orbiting science observatory, the Mars Reconnaissance Orbiter (MRO), for what is scheduled to be a 5.4-year mission. High resolution imaging of the surface is a principal goal of the mission. One consequence of this goal however is the need for a low science orbit. Unfortunately this orbit fails the required 20-year orbit life set in NASA Planetary Protection (PP) requirements [NASA. Planetary protection provisions for robotic extraterrestrial missions, NASA procedural requirements NPR 8020.12C, NASA HQ, Washington, DC, April 2005.]. So rather than sacrifice the science goals of the mission by raising the science orbit, the MRO Project chose to be the first orbiter to pursue the bio-burden reduction approach.  相似文献   

20.
围绕地球轨道的人造物体的数量日益增加,促使航天器的运行和飞行任务计划必须考虑到有碰撞的危险,特别对于载人飞行尤为重要。文内推演了空间碎片未来发展的情况和碰撞概率。空间飞行物体数目的进一步增长,必将导致和加快碰撞链式反应过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号