首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CubeSail is a nano-solar sail mission based on the 3U CubeSat standard, which is currently being designed and built at the Surrey Space Centre, University of Surrey. CubeSail will have a total mass of around 3 kg and will deploy a 5 × 5 m sail in low Earth orbit. The primary aim of the mission is to demonstrate the concept of solar sailing and end-of-life de-orbiting using the sail membrane as a drag-sail. The spacecraft will have a compact 3-axis stabilised attitude control system, which uses three magnetic torquers aligned with the spacecraft principle axis as well as a novel two-dimensional translation stage separating the spacecraft bus from the sail. CubeSail’s deployment mechanism consists of four novel booms and four-quadrant sail membranes. The proposed booms are made from tape-spring blades and will deploy the sail membrane from a 2U CubeSat standard structure. This paper presents a systems level overview of the CubeSat mission, focusing on the mission orbit and de-orbiting, in addition to the deployment, attitude control and the satellite bus.  相似文献   

2.
The aim of this paper is to quantify the performance of a flat solar sail to perform a double angular momentum reversal maneuver and produce a new class of two-dimensional, non-Keplerian orbits in the ecliptic plane. For a given pair of orbital parameters, the orbital period and the perihelion distance, it is possible to find the minimum solar sail characteristic acceleration required to fulfil a double angular momentum reversal trajectory. This problem is addressed using an optimal formulation and is solved through an indirect approach. The new trajectories are symmetrical with respect to the sun-perihelion line and exhibit a bean-like shape. Two main difficulties must be properly taken into account. On one side the sail is required to perform a rapid reorientation maneuver when it approaches the perihelion. Suitable simulations have shown that such a maneuver is feasible. In the second place the new trajectories require the use of high performance solar sails. For example, assuming an orbital period equal to 5 years, the required solar sail characteristic acceleration is greater than 3.4 mm/s2. Such a value, although beyond the currently available sail performance, is comparable to what is required by the original concept of H-reversal maneuvers introduced by Vulpetti in 1996.  相似文献   

3.
Solar sailing has long been envisaged as an enabling or disruptive technology. The promise of open-ended missions allows consideration of radically new trajectories and the delivery of spacecraft to previously unreachable or unsustainable observation outposts. A mission catalogue is presented of an extensive range of potential solar sail applications, allowing identification of the key features of missions which are enabled, or significantly enhance, through solar sail propulsion. Through these considerations a solar sail application-pull technology development roadmap is established, using each mission as a technology stepping-stone to the next.  相似文献   

4.
A torus-shaped sail consists of a reflective membrane attached to an inflatable torus-shaped rim. The sail’s deployment from its stowed configuration is initiated by introducing inflation pressure into the toroidal rim with an attached circular flat membrane coated by heat-sensitive materials that undergo thermal desorption (TD) from a solid to a gas phase. Our study of the deployment and acceleration of the sail is split into three steps: at a particular heliocentric distance a torus-shaped sail is deployed by a gas inflated into the toroidal rim and the membrane is kept flat by the pressure of the gas; under heating by solar radiation, the membrane coat undergoes TD and the sail is accelerated via TD of coating and solar radiation pressure (SRP); when TD ends, the sail utilizes thrust only from SRP. We study the stability of the torus-shaped sail and deflection and vibration of the flat membrane due to the acceleration by TD and SRP.  相似文献   

5.
The interstellar heliopause probe (IHP) is one of ESA’s technology reference studies (TRS). The TRS aim to focus the development of strategically important technologies of relevance to future science missions by studying technologically demanding and scientifically interesting missions that are currently not part of the science mission programme.

Equipped with a highly integrated payload suite (HIPS), the IHP will perform in situ exploration of the heliopause and the heliospheric interface. The HIPS, which is a standard element in all TRSs, miniaturize payloads through resource reduction by using miniaturized components and sensors, and by sharing common structures and payload functionality.

To achieve the scientific requirements of the mission, the spacecraft is to leave the heliosphere as close to the heliosphere nose as possible and reach a distance of 200 AU from the Sun within 25 years. This is possible by using a trajectory with two solar flybys and a solar sail with characteristic acceleration of 1.1 mm/s2, which corresponds to a 245 × 245 m2 solar sail and a sail thickness of 1–2 μm. The trajectory facilitates a modest sail design that could potentially be developed in a reasonable timeframe.

In this paper, an update to the results of studies being performed on this mission will be given and the current mission baseline and spacecraft design will be described. Furthermore, alternative solar sail systems and enabling technologies will be discussed.  相似文献   


6.
Some modifications of solar sail radiation pressure forces on a plate and on a sphere for use in the numerical simulation of ‘local-optimal’ (or ‘instantaneously optimal’) trajectories of a spacecraft with a solar sail are suggested. The force model development is chronologically reviewed, including its connection with solar sail surface reflective and thermal properties. The sail surface is considered as partly absorbing, partly reflective (specular and diffuse), partly transparent. Thermal balance is specified because the spacecraft moves from circular Earth orbit to near-Sun regions and thermal limitations on the sail film are taken into account. A spherical sail-balloon can be used in near-Sun regions for scientific research beginning with the solar-synchronous orbit and moving outward from the Sun. The Sun is considered not only as a point-like source of radiation but also as an extended source of radiation which is assumed to be consequently as a point-like source of radiation, a uniformly bright flat solar disc and uniformly bright solar sphere.  相似文献   

7.
The so-called “compound solar sail”, also known as “Solar Photon Thruster” (SPT), is a design concept, for which the two basic functions of the solar sail, namely light collection and thrust direction, are uncoupled. In this paper, we introduce a novel SPT concept, termed the Advanced Solar Photon Thruster (ASPT), which does not suffer from the simplified assumptions that have been made for the analysis of compound solar sails in previous studies. After having presented the equations that describe the force on the ASPT and after having performed a detailed design analysis, the performance of the ASPT with respect to the conventional flat solar sail (FSS) is investigated for three interplanetary mission scenarios: an Earth–Venus rendezvous, where the solar sail has to spiral towards the Sun, an Earth–Mars rendezvous, where the solar sail has to spiral away from the Sun, and an Earth-NEA rendezvous (to near-Earth asteroid 1996FG3), where a large change in orbital eccentricity is required. The investigated solar sails have realistic near-term characteristic accelerations between 0.1 and 0.2 mm/s2. Our results show that an SPT is not superior to the flat solar sail unless very idealistic assumptions are made.  相似文献   

8.
Detailed dynamic modeling of a solar sail requires recording of solar radiation pressure influence. A photon-solar sail is determined by the thrust value and the direction. We define the solar sail’s reflectivity depending on the film materials, the sail design and temperature, the thickness of multiple layers, and degradation factor, with a reasonable degree of accuracy. Thus, this work is devoted to the identification of optical characteristics of thin multilayer films in space flight conditions, i.e. to finding its reflectance, absorbance, and transmittance. In particular, the paper asks whether the solar sail simulates by a mathematical model of the optical characteristics of a multilayer epitaxial thin film. The temperature change effect and optical properties of solar sail degradation are considered as well. Solar sail flight from Earth to Mercury is designed as a simulation of the flight change in optical parameters.  相似文献   

9.
太阳帆推进任务的快速仿真方法   总被引:1,自引:0,他引:1  
研究太阳帆的力学特性和轨道控制设计方法,导出太阳帆的无奇点控制律.提出通过STK中MATLAB语言编写的嵌入式脚本(Plug in Script)来将由控制律得到的光压力加速度矢量,添加到STK轨道计算力学模型中,从而进行轨道控制的方法.仿真结果表明,对于常规方法难以进行仿真分析的航天器动力学模型(如太阳帆),所提出的方法能快速灵活地支持其相应的任务,并增强任务场景的可视化,从而实现利用STK丰富的功能特性进行复杂航天任务的设计、分析和验证.  相似文献   

10.
The interaction between electromagnetic waves and matter is the working principle of a photon-propelled spacecraft, which extracts momentum from the solar radiation to obtain a propulsive acceleration. An example is offered by solar sails, which use a thin membrane to reflect the impinging photons. The solar radiation momentum may actually be transferred to matter by means of various optical phenomena, such as absorption, emission, or refraction. This paper deals with the novel concept of a refractive sail, through which the Sun’s light is refracted by crossing a film made of polymeric micro-prisms. The main feature of a refractive sail is to give a large transverse component of thrust even when the sail nominal plane is orthogonal to the Sun-spacecraft line. Starting from the recent literature results, this paper proposes a semi-analytical thrust model that estimates the characteristics of the propulsive acceleration vector as a function of the sail attitude angles. Such a mathematical model is then used to analyze a simplified Earth-Mars and Earth-Venus interplanetary transfer within an optimal framework.  相似文献   

11.
A spinning solar sail IKAROS’s membrane is estimated to unexpectedly deform into an inverted pyramid shape due to thin-film devices with curvature, such as thin-film solar cells and steering devices on the membrane. It is important to investigate the deformation caused by the curved thin-film devices and predict the sail shape because the out-of-plane deformation greatly affects solar radiation pressure (SRP) and SRP torque. The purpose of this paper is to clarify the relationship between the global shape and orientation and position of curved thin-film devices and to evaluate SRP torque on the global shape using finite element analysis. The global shape is evaluated based on the out-of-plane displacement and the SRP torque. When the curved thin-film devices make the membrane shrink in the circumferential, diagonal, and radial direction, the sail deforms into a pyramid shape, an inverted pyramid one, and a saddle one, respectively. The saddle shape is more desirable for solar sails than the inverted pyramid shape and the pyramid one from the viewpoint of shape stability to SRP and control of SRP torque in the normal direction of the sail (windmill torque). The position of the thin-film device tends to increase the absolute value of windmill torque when it is biased circumferentially from the petal central axis. The suggested design principles for the arrangement of thin-film devices is that the curved thin-film devices should be directed so that the sail shrinks in the radial direction in order to deform the sail into a saddle shape with high shape stability, and the position of the thin-film devices should be biased in the circumferential direction paying attention to the absolute value of windmill torque to determine the direction of windmill torque.  相似文献   

12.
This paper introduces a new attitude control system for a solar sail, which leverages solar radiation pressure. This novel system achieves completely fuel-free and oscillation-free attitude control of a flexible spinning solar sail. This system consists of thin-film-type devices that electrically control their optical parameters such as reflectivity to generate an imbalance in the solar radiation pressure applied to the edge of the sail. By using these devices, minute and continuous control torque can be applied to the sail to realize very stable and fuel-free attitude control of the large and flexible membrane. The control system was implemented as an optional attitude control system for small solar power sail demonstrator named IKAROS (Interplanetary Kite-craft Accelerated by Radiation Of the Sun). In-orbit attitude control experiments were conducted, and the performance of the controller was successfully verified in comparison with the ground-based analytical performance estimation.  相似文献   

13.
The CubeSail mission is a low-cost demonstration of the UltraSail solar sailing concept (, ,  and ), using two near-identical CubeSat satellites to deploy a 260 m-long, 20 m2 reflecting film. The two satellites are launched as a unit, detumbled, and separated, with the film unwinding symmetrically from motorized reels. The conformity to the CubeSat specification allows for reduction in launch costs as a secondary payload and utilization of the University of Illinois-developed spacecraft bus. The CubeSail demonstration is the first in a series of increasingly-complex missions aimed at validating several spacecraft subsystems, including attitude determination and control, the separation release unit, reel-based film deployment, as well as the dynamical behavior of the sail and on-orbit solar propulsion. The presented work describes dynamical behavior and control methods used during three main phases of the mission. The three phases include initial detumbling and stabilization using magnetic torque actuators, gravity-gradient-based deployment of the film, and steady-state film deformations in low Earth orbit in the presence of external forces of solar radiation pressure, aerodynamic drag, and gravity-gradient.  相似文献   

14.
The aim of this paper is to explore the capabilities of a solar electric propelled spacecraft on a mission towards circumsolar space. Using an indirect approach, the paper investigates minimum time of transfer (direct) trajectories from an initial heliocentric parking orbit to a desired final heliocentric target orbit, with a low perihelion radius and a high orbital inclination. The simulation results are then collected into graphs and tables for a trade-off analysis of the main mission parameters. Finally, a comparison of the performance between a solar electric and a (photonic) solar sail based spacecraft is discussed.  相似文献   

15.
A shape of the satellite’s solar sail membrane is essential for unloading angular momentum in the three-axis stabilized attitude control system because the three-dimensional solar sail can receive solar radiation pressure from arbitrary directions. In this paper, the objective is the shape optimization of a three-dimensional membrane-structured solar sail using the angular momentum unloading strategy. We modelled and simulated the solar radiation pressure torque, for unloading angular momentum. Using the simulation system, since the unloading angular momentum rate is maximized, the shape of the three-dimensional solar sail was optimized using a Genetic algorithm and Sequential Quadratic Programming. The unloading velocity in the optimized shaped solar sail was greatly improved with respect to a conventional flat or pyramid solar sail.  相似文献   

16.
For precursor solar sail activities a strategy for a controlled deployment of large membranes was developed based on a combination of zig-zag folding and coiling of triangular sail segments spanned between crossed booms. This strategy required four autonomous deployment units that were jettisoned after the deployment is completed. In order to reduce the complexity of the system an adaptation of that deployment strategy is investigated.A baseline design for the deployment mechanisms is established that allows the deployment actuation from a central bus system in order to reduce the complexity of the system. The mass of such a sail craft will be slightly increased but its performance is still be reasonable for first solar sail missions.The presented design will be demonstrated on breadboard level showing the feasibility of the deployment strategy. The characteristic acceleration will be evaluated and compared to the requirements of certain proposed solar sail missions.  相似文献   

17.
This paper presents the preliminary systems design of a pole-sitter. This is a spacecraft that hovers over an Earth pole, creating a platform for full hemispheric observation of the polar regions, as well as direct-link telecommunications. To provide the necessary thrust, a hybrid propulsion system combines a solar sail with a more mature solar electric propulsion (SEP) thruster. Previous work by the authors showed that the combination of the two allows lower propellant mass fractions, at the cost of increased system complexity. This paper compares the pure SEP spacecraft with the hybrid spacecraft in terms of the launch mass necessary to deliver a certain payload for a given mission duration. A mass budget is proposed, and the conditions investigated under which the hybrid sail saves on the initial spacecraft initial mass. It is found that the hybrid spacecraft with near- to mid-term sail technology has a lower initial mass than the SEP case if the mission duration is 7 years or more, with greater benefits for longer duration missions. The hybrid spacecraft with far-term sail technology outperforms the pure SEP case even for short missions.  相似文献   

18.
The heliocentric orbital dynamics of a spacecraft propelled by a solar sail is affected by some uncertainty sources, including possible inaccuracies in the measurement of the sail film optical properties. Moreover, the solar radiation pressure, which is responsible for the solar sail propulsive acceleration generation, is not time-constant and is subject to fluctuations that are basically unpredictable and superimposed to the well-known 11-year solar activity cycle. In this context, this work aims at investigating the effects of such uncertainties on the actual heliocentric trajectory of a solar sail by means of stochastic simulations performed with a generalized polynomial chaos procedure. The numerical results give an estimation of their impact on the actual heliocentric trajectory and identify whether some of the uncertainty sources are more relevant than others. This is a fundamental information for directing more accurate theoretical and experimental efforts toward the most important parameters, in order to obtain an accurate knowledge of the solar sail thrust vector characteristics and, eventually, of the spacecraft heliocentric position.  相似文献   

19.
Status of solar sail technology within NASA   总被引:2,自引:0,他引:2  
In the early 2000s, NASA made substantial progress in the development of solar sail propulsion systems for use in robotic science and exploration of the solar system. Two different 20-m solar sail systems were produced. NASA has successfully completed functional vacuum testing in their Glenn Research Center’s Space Power Facility at Plum Brook Station, Ohio. The sails were designed and developed by Alliant Techsystems Space Systems and L’Garde, respectively. The sail systems consist of a central structure with four deployable booms that support each sail. These sail designs are robust enough for deployment in a one-atmosphere, one-gravity environment and are scalable to much larger solar sails – perhaps as large as 150 m on a side. Computation modeling and analytical simulations were performed in order to assess the scalability of the technology to the larger sizes that are required to implement the first generation of missions using solar sails. Furthermore, life and space environmental effects testing of sail and component materials was also conducted.  相似文献   

20.
Ballistic design of solar sailing missions in the solar system is composed of defining the design parameters, the control programs, and the trajectories that provide performance goals of a flight. The use of a solar sail spacecraft imposes specific restrictions on mission parameters that include the degradation limit on the flight duration, the maximum temperature of solar sail's surface, the minimum distance from the Sun, the maximum angular velocity of the spacecraft's rotation and others.Many authors considered the impact of these restrictions on the design of the mission separately, but they used a sophisticated method of finding the exact optimal motion control or applied the most straightforward laws of motion control. This paper uses local-optimal control laws at the complete mathematical models of motion and functioning of solar sail spacecraft to describe a technique of designing interplanetary missions. The described method avoids the need to obtain an accurate optimal solution to the control problem and does not cause significant computational difficulties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号