首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
颤振主动抑制(AFS)是国际上普遍推崇的颤振问题解决方案,对现代飞行器设计具有重要意义。基于国际上滑模观测器的二维机翼AFS应用,以双后缘控制面真实机翼模型为对象,发展一种低阶滑模观测器的三维机翼AFS设计方法。该观测器性能优越、特点鲜明,但传统的设计流程繁琐,限制了其在高阶模型对象上的使用。本文借助线性二次型高斯(LQG)方法中的最优滤波器增益矩阵,提出一种简化的滑模观测器设计流程。结合气动弹性物理背景,使本文方法理论上能够应用于实践。算例对比分析结果表明,本文方法比LQG方法具有更好的抵抗噪声能力。  相似文献   

2.
An active shape control approach for a circular flexible space structure is studied. The shape of these flexible structures may need active shape control due to some particular mission objectives. For example, antenna reflectors may have requirements for their shape accuracy to guarantee communication performance; and some solar sails may change their shape to realize different commissions during interplanetary flight. This paper investigates an active shape control process executed by the gyricity (stored angular momentum) distribution existing in the circular flexible space structure. The shape of the circular flexible space structure is expected to be reformed from a plane plate to a paraboloidal plate. An optimal gyricity distribution is derived based on the optimal control theory for systems described by partial differential equations. Distributed forces can be generated by the optimal gyricity distribution in a rotating field to implement the active shape control. The dynamic model of the circular flexible space structure is established for the active shape control through the finite element method. Numerical simulation validates the functionality of the shape control method, and illustrates the shape-adjusting process of the circular flexible space structure.  相似文献   

3.
A predefined-time attitude stabilization for complex structure spacecraft with liquid sloshing and flexible vibration is investigated under input saturation during orbital maneuver. First, the attitude dynamics model of liquid-filled flexible spacecraft is constructed. Meanwhile, the influence of solar panel vibration and liquid sloshing is treated as a disturbance in the controller design. Next, an adaptive predefined-time control scheme is proposed by applying sliding mode control theory. A predefined-time convergent sliding surface and reaching law are designed to ensure the predefined-time fast convergence rate. Furthermore, a novel adaptive algorithm is developed to handle the disturbances from liquid sloshing and flexible vibration, ensuring that the system converges to a small neighborhood of the equilibrium. Additionally, a new auxiliary system is constructed to deal with the effects of input saturation. At last, one simulation case is performed to verify the feasibility and advantages of the proposed algorithm.  相似文献   

4.
研究空间机械臂系统捕获卫星过程的碰撞动力学及受碰撞后不稳定系统的控制问题. 利用第二类拉格朗日方程推导得到空间机械臂系统的动力学模型. 在空间机械臂捕获卫星而受碰撞冲击过程中,利用动量冲量法评估碰撞冲击对空间机械臂系统运动状态变化的影响效应. 为使受碰撞冲击后不稳定的空间机械臂与被捕获卫星组合体系统恢复稳定,设计了线性反馈和线性二次最优复合控制算法对受碰撞冲击后空间机械臂系统进行镇定控制和柔性杆振动抑制,所提出的控制算法无需控制漂浮基的位置,从而可以节省漂浮基位置控制推进器燃料消耗. 通过数值算例模拟了碰撞冲击对空间机械臂系统运动状态的影响效应并验证上述控制算法的效果.  相似文献   

5.
Precise pointing of the satellite and its payload is essential in the accurate accomplishment of a space mission. In this study, the system of a satellite and its payload are considered as 4-DOF equations of motion. The time-varying payload can observe one direction of the Earth independently, and the satellite can point to the Earth station by its 3-DOF motions simultaneously. Sliding mode and LQR controllers are designed for damping disturbances, and consequently high pointing accuracy. Environmental disturbances and the associated time delay of Low Earth Orbit (LEO) are applied to the system. An algorithm based on Particle Swarm Optimization (PSO) is proposed to find the optimum values of variables and Normalized Integral Square Error (NISE) of the two aforementioned controllers. Numerical simulations indicate the optimized magnitudes of target detection errors and control efforts in four directions. The results revealed that PSO-SMC can finely track the time-varying payload and has better efficiency in comparison with PSO-LQR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号