首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Atmospheric water vapour plays an important role in phenomena related to the global hydrologic cycle and climate change. However, the rapid temporal–spatial variation in global tropospheric water vapour has not been well investigated due to a lack of long-term, high-temporal-resolution precipitable water vapour (PWV). Accordingly, this study generates an hourly PWV dataset for 272 ground-based International Global Navigation Satellite System (GNSS) Service (IGS) stations over the period of 2005–2016 using the zenith troposphere delay (ZTD) derived from global-scale GNSS observation. The root mean square (RMS) of the hourly ZTD obtained from the IGS tropospheric product is approximately 4 mm. A fifth-generation reanalysis dataset of the European Centre for Medium-range Weather Forecasting (ECMWF ERA5) is used to obtain hourly surface temperature (T) and pressure (P), which are first validated with GNSS synoptic station data and radiosonde data, respectively. Then, T and P are used to calculate the water vapour-weighted atmospheric mean temperature (Tm) and zenith hydrostatic delay (ZHD), respectively. T and P at the GNSS stations are obtained via an interpolation in the horizontal and vertical directions using the grid-based ERA5 reanalysis dataset. Here, Tm is calculated using a neural network model, whereas ZHD is obtained using an empirical Saastamoinen model. The RMS values of T and P at the collocated 693 radiosonde stations are 1.6 K and 3.1 hPa, respectively. Therefore, the theoretical error of PWV caused by the errors in ZTD, T and P is on the order of approximately 2.1 mm. A practical comparison experiment is performed using 97 collocated radiosonde stations and 23 GNSS stations equipped with meteorological sensors. The RMS and bias of the hourly PWV dataset are 2.87/?0.16 and 2.45/0.55 mm, respectively, when compared with radiosonde and GNSS stations equipped with meteorological sensors. Additionally, preliminary analysis of the hourly PWV dataset during the EI Niño event of 2014–2016 further indicates the capability of monitoring the daily changes in atmospheric water vapour. This finding is interesting and significant for further climate research.  相似文献   

2.
The March 2010 Melbourne storm is used as a case study to examine the potential of using Global Positioning System (GPS) observations for studying the precipitable water vapour (PWV) field. The Victorian statewide GPS infrastructure network, i.e. GPSnet, was used in this study. GPSnet is currently the only statewide and densest GPS infrastructure network in Australia, which provides an excellent opportunity to examine the distribution of water vapour as the severe weather system passed over the state. Data from 15 GPSnet stations were processed over a one-week period, i.e. a few days prior to and after the storm passage, during which the course of the storm extended from the west to the southeast corner of the state. In addition, data from two radiosonde sites of the Australian Bureau of Meteorology Upper Air Network were used to compare and validate the GPS derived PWV measurements. The findings demonstrate that there is strong spatial and temporal correlation between variations of the ground-based GPS-PWV estimates and the passage of the storm over the state. This is encouraging as the ground-based GPS water vapour sensing technique can be considered as a supplemental meteorological sensor in studying severe weather events. The advantage of using ground-based GPS-PWV technique is that it is capable of providing continuous observation of the storm passage with high temporal resolution. The spatial resolution of the distribution of water vapour is dependent on the geographical location and density of the GPS stations.  相似文献   

3.
This paper discusses GPS (Global Position System) meteorology. The research presented is based on a comparison of values of precipitable water vapour PWV, based on GPS measurements using final and predicted ephemerides of satellite orbits. We analysed recent year’s improvement in predicting ephemerides. We compared the data outputs from a radiosonde using GPS receiver measurements directly from the meteorological station from which the radiosondes were launched. The results indicate a high quality of the predicted ephemerides. This finding makes predicted ephemerides highly usable for near real-time estimations of PWV. To use PWV in meteorological forecast applications, this high speed of PWV values supply is necessary.  相似文献   

4.
One of the most attractive scientific issues in the use of GNSS (Global Navigation Satellite System) signals, from a meteorological point of view, is the retrieval of high resolution tropospheric water vapour maps. The real-time (or quasi real-time) knowledge of such distributions could be very useful for several applications, from operative meteorology to atmospheric modelling. Moreover, the exploitation of wet refractivity field reconstruction techniques can be used for atmospheric delay compensation purposes and, as a very promising activity, it could be applied for example to calibrate SAR or Interferometric-SAR (In-SAR) observations for land remote sensing. This is in fact one of the objectives of the European Space Agency project METAWAVE (Mitigation of Electromagnetic Transmission errors induced by Atmospheric Water vapour Effects), in which several techniques are investigated and results were compared to identify a strategy to remove the contribution of water vapour induced propagation delays in In-SAR products. Within this project, the tomographic reconstruction of three dimensional wet refractivity fields from tropospheric delays observed by a local GNSS network (9 dual frequency GPS receivers) deployed over Como area (Italy), during 12–18 October, 2008, was performed. Despite limitations due to the network design, internal consistency tests prove the efficiency of the adopted tomographic approach: the rms of the difference between reconstructed and GNSS observed Zenith Wet Delays (ZWD) are in the order of 4 mm. A good agreement is also observed between our ZWDs and corresponding delays obtained by vertically integrating independent wet refractivity fields, taken by co-located meteorological analysis. Finally, during the observing period, reconstructed vertical wet refractivity profiles evolution reveals water vapour variations induced by simple cloud covering. Even if our main goal was to demonstrate the effectiveness in adopting tomographic reconstruction procedures for the evaluation of propagation delays inside water vapour fields, the actual water vapour vertical variability and its evolution with time is well reproduced, demonstrating also the effectiveness of the inferred 3D wet refractivity fields.  相似文献   

5.
Precipitable water vapor (PWV) can be assimilated into a numerical weather model (NWM) to improve the prediction accuracy of numerical weather prediction. In this study, taking GNSS data for the Beijing Fangshan station (BJFS) as an example, based on the method of Pearson correlation coefficient combined with quantitative analysis, GNSS datasets are used to study the relationships between GNSS-derived PWV (GNSS PWV_Met) and its influencing factors, including the internal influencing factors zenith troposphere delay (ZTD), zenith hydrostatic delay (ZHD), zenith wet delay (ZWD), and surface temperature (Ts), and the external influencing factor haze (mainly PM2.5). Firstly, based on the strong correlation between PWV_Met and ZTD hourly sequences from the International GNSS Service Network’s BJFS station for DOYS 182–212, 2015, the results of experiment prove that the reliability of GNSS ZTD is used to forecast PWV_Met in short-term forecasting. Secondly, based on hourly data of BJFS in 2016, the correlation between PWV_Met and ZTD, ZWD, ZHD, pressure (P) and Ts is analyzed, and then, with the rate of ZTD variation as the main factor, ZTD variation as auxiliary factor, the prediction success rate is 88.24% from hourly data of precipitation event for DOYs 183–213 in Beijing. The experiment indicates that ZTD can help forecast short-term precipitation. Thirdly, based on data from three hazy periods with relatively stable weather conditions, no heavy rainfall, and relatively continuous data in the past three years, the correlation between GNSS PWV_Met/ZTD and PM2.5 hourly series is analyzed. The results of the experiments suggests that GNSS ZTD should be considered to assist in haze monitoring. So in the absence of radiosonde stations and meteorological elements, ZTDs on retrieval of GNSS stations have more application value in short-term forecast.  相似文献   

6.
Global Navigation Satellite Systems (GNSS) are emerging as possible tools for remote sensing high-resolution atmospheric water vapour that improves weather forecasting through numerical weather prediction models. Nowadays, the GNSS-derived tropospheric zenith total delay (ZTD), comprising zenith dry delay (ZDD) and zenith wet delay (ZWD), is achievable with sub-centimetre accuracy. However, if no representative near-site meteorological information is available, the quality of the ZDD derived from tropospheric models is degraded, leading to inaccurate estimation of the water vapour component ZWD as difference between ZTD and ZDD. On the basis of freely accessible regional surface meteorological data, this paper proposes a height-dependent linear correction model for a priori ZDD. By applying the ordinary least-squares estimation (OLSE), bootstrapping (BOOT), and leave-one-out cross-validation (CROS) methods, the model parameters are estimated and analysed with respect to outlier detection. The model validation is carried out using GNSS stations with near-site meteorological measurements. The results verify the efficiency of the proposed ZDD correction model, showing a significant reduction in the mean bias from several centimetres to about 5 mm. The OLSE method enables a fast computation, while the CROS procedure allows for outlier detection. All the three methods produce consistent results after outlier elimination, which improves the regression quality by about 20% and the model accuracy by up to 30%.  相似文献   

7.
The German Research Centre for Geosciences (GFZ) operates a GNSS water vapour tomography system using about 350 German GNSS stations. The GNSS data processing at the GFZ works in near real-time and provides zenith total delays, integrated water vapour and slant delay data operationally. This large data set of more than 50,000 slant delays per hour is used to reconstruct spatially resolved humidity fields by means of tomographic techniques. It can be expected that additional observations from the future Galileo system provide more information with improved quality. A simulation study covering 12 h at 14 July 2009 was therefore started to estimate the impact of GPS, Galileo and GLONASS data on the GNSS tomography. It is shown that the spatial coverage of the atmosphere with slant paths is highly improved by combining observations from two or three satellite systems. Equally important for a reliable tomographic reconstruction is the distribution of slant path intersections as they are required to locate the integrated delay information. The number of intersection points can be increased by a factor of 4 or 8 if two or three systems are combined and their distribution will cover larger regions of the atmosphere. The combined data sets can be used to increase the spatiotemporal resolution of the reconstructed humidity fields up to 30 km horizontally, 300 m vertically and 15 min. The reconstruction quality could not be improved considerably using the currently available techniques.  相似文献   

8.
With the development of Global Navigation Satellite System (GNSS), the detection of precipitable water vapor (PWV) using the GNSS atmospheric sounding technique becomes a research interest in GNSS meteorology. In the conversion of zenith tropospheric delay (ZTD) to PWV, the weighted mean temperature (Tm) plays a crucial role. Generally, the Tm estimated by the linear regression models based on surface temperature (Ts) cannot meet the requirement for global use, and the accuracy of Tm derived from the empirical models is limited. In this study, a new Tm model, named GGTm-Ts model, was developed using the global geodetic observing system (GGOS) atmosphere Tm data and European Centre for Medium-Range Weather Forecasts (ECMWF) data from 2011 to 2015. Resting upon a global 2.5°*2° grid of coefficients of Tm-Ts linear function, the new model can provide Tm at any site in two modes, one for the case with measured Ts provided, i.e., the accurate mode, the other for the case that Ts provided by a subroutine, i.e., the normal mode. The performance of GGTm-Ts model was assessed against the Bevis formula, GPT2w and GPT2wh model using different data sources in 2016-the GGOS atmosphere and radiosonde data. The results show that the GGTm-Ts model in accurate mode achieves best performance with an improvement of 46.9 %/15.3 %, 37.8 %/19.5 % and 34.4 %/14.2 % over other three models in the GGOS atmosphere/radiosonde comparison. For the normal mode, the GGTm-Ts model outperforms the GPT2w model and achieves equivalence results with the GPT2wh model. Moreover, the impact of Tm on GNSS-PWV was analyzed to validate the performance of the GGTm-Ts model.  相似文献   

9.
Global Navigation Satellite System (GNSS) radio occultation (RO) is an innovative meteorological remote sensing technique for measuring atmospheric parameters such as refractivity, temperature, water vapour and pressure for the improvement of numerical weather prediction (NWP) and global climate monitoring (GCM). GNSS RO has many unique characteristics including global coverage, long-term stability of observations, as well as high accuracy and high vertical resolution of the derived atmospheric profiles. One of the main error sources in GNSS RO observations that significantly affect the accuracy of the derived atmospheric parameters in the stratosphere is the ionospheric error. In order to mitigate the effect of this error, the linear ionospheric correction approach for dual-frequency GNSS RO observations is commonly used. However, the residual ionospheric errors (RIEs) can be still significant, especially when large ionospheric disturbances occur and prevail such as during the periods of active space weather. In this study, the RIEs were investigated under different local time, propagation direction and solar activity conditions and their effects on RO bending angles are characterised using end-to-end simulations. A three-step simulation study was designed to investigate the characteristics of the RIEs through comparing the bending angles with and without the effects of the RIEs. This research forms an important step forward in improving the accuracy of the atmospheric profiles derived from the GNSS RO technique.  相似文献   

10.
Due to the special geographical location and extreme climate environment, the polar regions (Antarctic and Arctic) have an important impact on global climate change. Atmospheric weighted mean temperature (Tm) is a crucial parameter in the retrieval of precipitable water vapor (PWV) from the zenith wet delay (ZWD) of ground-based Global Navigation Satellite System (GNSS) signal propagation. In this paper, the correlation between weighted mean temperature and surface temperature (Ts) is studied firstly. It is shown that the correlation coefficients between Tm and Ts are 0.93 in the Antarctic and 0.94 in the Arctic. The linear regression Tm model and quadratic function Tm model of the Antarctic and the Arctic are established respectively using the radiosonde profiles of 12 stations in the Antarctic and 58 stations in the Arctic from 2008 to 2015. The accuracies of the linear regression Tm model, the quadratic function Tm model and GPT2w Tm model which is a state-of-the-art global Tm model are verified using the radiosonde profiles from 2016 to 2018 in the Antarctic and Arctic. Root Mean Square (RMS) errors of the linear regression Tm model, the quadratic function Tm model and GPT2w Tm model in the Antarctic are 3.07 K, 2.87 K and 4.32 K respectively, and those in the Arctic are 3.53 K, 3.38 K and 4.82 K, which indicates that the quadratic function Tm model has a higher accuracy compared to linear regression Tm model, and the accuracies of the two regional Tm models are better than that of GPT2w Tm model in the polar regions. In order to better evaluate the accuracy of Tm in the PWV retrieval, the PWV values of radiosondes are used for comparisons as the reference value. The RMS errors of PWV derived from the two Tm models are similar for 1.28 mm in the Antarctic and 1 mm in the Arctic respectively. In addition, the spatial and temporal variation characteristics of Tm are analyzed in the polar regions by spectral analysis of Tm data using fast Fourier transform. The results show that the Tm has obvious seasonality and annual periodicity in the polar regions, and the maximum difference between warm season and cold season is about 63 K. After comparing and analyzing the influences of latitude, longitude and elevation on the Tm in the polar regions, it is found that latitude and elevation have a greater influence on the Tm than the longitude. As the latitude and elevation increase, the Tm decreases, and vice versa in the polar regions.  相似文献   

11.
Millimeterwave window frequencies between the two successive absorption maxima of 60?GHz and 120?GHz respectively, play a significant role in the context of radar and communication applications. Atmospheric parameters like temperature, water vapour and oxygen play major roles for determination of window frequencies which are latitude dependent. Radiosonde data were analyzed to identify a frequency at which minimum signal attenuation occurs in the millimeterwave band, between 60?GHz and 120?GHz, at various places in India. The data are taken from British Atmospheric Data Centre (BADC, U.K). Analysis shows that water vapour plays a dominant role for determining window frequency during the monsoon season. On the other hand, temperature dominates water vapour in shifting window frequency during the winter and summer seasons. The results obtained also show that minimum attenuation occurs at 73?GHz and maximum at 83?GHz over the chosen places in India during January to December depending on the latitudinal position. Another salient result obtained from our analyses is that water vapour is mainly responsible for lowering the window frequency from its conventionally accepted value, over certain places in India. Hence, these climatological parameters play a major role in determining window frequency over certain places of choice in India throughout the year.  相似文献   

12.
The rainfall process of Chengdu region in autumn has obvious regional features. Especially, the night-time rain rate of this region in this season is very high in China. Studying the spatial distribution and temporal variation of regional atmospheric precipitable water vapor (PWV) is important for our understanding of water vapor related processes, such as rainfall, evaporation, convective activity, among others in this area. Since GPS detection technology has the unique characteristics, such as all-weather, high accuracy, high spatial and temporal resolution as well as low cost, tracking and monitoring techniques on water vapor has achieved rapid developments in recent years. With GPS–PWV data at 30-min interval gathered from six GPS observational stations in Chengdu region in two autumns (September 2007–December 2007 and September 2008–December 2008), it is revealed that negative correlations exist between seasonally averaged value of GPS–PWV as well as its variation amplitude and local terrain altitude. The variation of PWV in the upper atmosphere of this region results from the water vapor variation from surface to 850 hPa. With the help of Fast Fourier Transform (FFT), it is found that the autumn PWV in Chengdu region has a multi-scale feature, which includes a seasonal cycle, 22.5 days period (quasi-tri-weekly oscillation). The variation of the GPS–PWV is related to periodical change in the transmitting of the water vapor caused by zonal and meridional wind strengths’ change and to the East Asian monsoon system. According to seasonal variation characteristics, we concluded that the middle October is the critical turning point in PWV content. On a shorter time scale, the relationship between autumn PWV and ground meteorological elements was obtained using the composite analysis approach.  相似文献   

13.
Global Navigation Satellite System (GNSS) measurements of the Total Electron Content (TEC) from local (Dourbes, 50.1°N, 04.6°E) and European IGS (International GNSS Service) stations were used to obtain the TEC changes during the geomagnetic storms of the latest solar activity cycle. A common epoch analysis, with respect to geomagnetic storm intensity, season, and latitude, was performed on data representing nearly 300 storm events. In general, the storm-time behaviour of TEC shows clear positive and negative phases, relative to the non-storm (median) behaviour, with amplitudes that tend to increase during more intense storms. The most pronounced positive phase is observed during winter, while the strongest and yet shortest negative phase is detected during equinox. Average storm-time patterns in the TEC behaviour are deduced for potential use in ionosphere prediction services.  相似文献   

14.
The Global Navigation Satellite System (GNSS) has been a very powerful and important contributor to all scientific questions related to precise positioning on Earth’s surface, particularly as a mature technique in geodesy and geosciences. With the development of GNSS as a satellite microwave (L-band) technique, more and wider applications and new potentials are explored and utilized. The versatile and available GNSS signals can image the Earth’s surface environments as a new, highly precise, continuous, all-weather and near-real-time remote sensing tool. The refracted signals from GNSS radio occultation satellites together with ground GNSS observations can provide the high-resolution tropospheric water vapor, temperature and pressure, tropopause parameters and ionospheric total electron content (TEC) and electron density profile as well. The GNSS reflected signals from the ocean and land surface could determine the ocean height, wind speed and wind direction of ocean surface, soil moisture, ice and snow thickness. In this paper, GNSS remote sensing applications in the atmosphere, oceans, land and hydrology are presented as well as new objectives and results discussed.  相似文献   

15.
We have used microwave absorbing material in different geometries around ground-based Global Navigation Satellite System (GNSS) antennas in order to mitigate multipath effects on the estimates of station coordinates and atmospheric water vapour. The influence of a hemispheric radome – of the same type as in the Swedish GPS network SWEPOS – was also investigated. Two GNSS stations at the Onsala Space Observatory were used forming a 12 m baseline. GPS data from October 2008 to November 2009 were analyzed by the GIPSY/OASIS II software using the Precise Point Positioning (PPP) processing strategy for five different elevation cutoff angles from 5° to 25°. We found that the use of the absorbing material decreases the offset in the estimated vertical component of the baseline from ∼27 mm to ∼4 mm when the elevation cutoff angle varies from 5° to 20°. The horizontal components are much less affected. The corresponding offset in the estimates of the atmospheric Integrated Water Vapour (IWV) decreases from ∼1.6 kg/m2 to ∼0.3 kg/m2. Changes less than 5 mm in the offsets in the vertical component of the baseline are seen for all five elevation cutoff angle solutions when the antenna was covered by a hemispheric radome. Using the radome affects the IWV estimates less than 0.4 kg/m2 for all different solutions. IWV comparisons between a Water Vapour Radiometer (WVR) and the GPS data give consistent results.  相似文献   

16.
A scanning infrared radiometer used to measure nitric acid was flown on the STRATOPROBE Flight of November 8, 1978. Using the observed thermal emission from 6.5 to 7.4 microns during the balloon ascent, a water vapour profile has been derived using a band model of the water vapour lines in this spectral region. The resulting profile has a minimum of 3.3 ppmv at the tropopause and then rises to a value of 5 ppmv by 30 km. The profile is comparable to the profile from another water vapour instrument from the National Physical Laboratory which was flown on the LIP balloon payload on the same day. A coincident profile from the LIMS experiment on NIMBUS 7 was also obtained since the STRATOPROBE experiment was flown as a correlative measurement for the LIMS experiment.  相似文献   

17.
In recent years, with the continuous development of Global Navigation Satellite System (GNSS), it has been applied not only to navigation and positioning, but also to Earth surface environment monitoring. At present, when performing GNSS-IR (GNSS Interferometric Reflectometry) snow depth inversion, Lomb-Scargle Periodogram (LSP) spectrum analysis is mainly used to calculate the vertical height from the antenna phase center to the reflection surface. However, it has the problem of low identification of power spectrum analysis, which may lead to frequency leakage. Therefore, Fast Fourier Transform (FFT) spectrum analysis and Nonlinear Least Square Fitting (NLSF) are introduced to calculate the vertical height in this paper. The GNSS-IR snow depth inversion experiment is carried out by using the observation data of P351 station in PBO (Plate Boundary Observatory) network of the United States from 2013 to 2016. Three algorithms are used to invert the snow depth and compared with the actual snow depth provided by the station 490 in the SNOTEL network. The observations data of L1 and L2 bands are respectively used to find the optimal combination between different algorithms further to improve the accuracy of GNSS-IR snow depth inversion. For L1 band, different snow depths correspond to different optimal algorithms. When the snow depth is less than 0.8 m, the inversion accuracy of NLSF algorithm is the highest. When the snow depth is greater than 0.8 m, the inversion accuracy of FFT algorithm is higher. Therefore, according to the different snow depth, a combined algorithm of NLSF + FFT is proposed for GNSS-IR snow depth inversion. Compared with the traditional LSP algorithm, the inversion accuracy of the combined algorithm is improved by 10%. For L2 band data, the results show that the accuracy of snow depth inversion of various algorithms do not change with the variations of snow depth. Among the three single algorithms, the inversion accuracy of FFT algorithm is better than that of LSP and NLSF algorithms.  相似文献   

18.
Precipitable Water Vapor (PWV) plays an important role for weather forecasting. It is helpful in evaluating the changes of the weather system via observing the distribution of water vapor. The ability of calculating PWV from Global Positioning System (GPS) signals is useful to understand the special weather phenomenon. In this study, 95 ground-based GPS and rainfall stations in Taiwan were utilized from 2006 to 2012 to analyze the relationship between PWV and rainfall. The PWV data were classified into four classes (no, light, moderate and heavy rainfall), and the vertical gradients of the PWV were obtained and the variations of the PWV were analyzed. The results indicated that as the GPS elevation increased every 100?m, the PWV values decreased by 9.5?mm, 11.0?mm, 12.2?mm and 12.3?mm during the no, light, moderate and heavy rainfall conditions, respectively. After applying correction using the vertical gradients mentioned above, the average PWV thresholds were 41.8?mm, 52.9?mm, 62.5?mm and 64.4?mm under the no, light, moderate and heavy rainfall conditions, respectively. This study offers another type of empirical threshold to assist the rainfall prediction and can be used to distinguish the rainfall features between different areas in Taiwan.  相似文献   

19.
Data from the archive of the International GNSS Services (IGS) were used to study the seasonal variations of Total Electron Content (TEC) over three stations located at different latitudes in the southern hemisphere during the geomagnetic storms of 11 January, 6 April, 8 June, and 13 October 2000, representing storms that occurred in summer, autumn equinox, winter and spring equinox, respectively. The percentage TEC deviation with respect to reference values differs substantially from season to season. A strong seasonal anomaly and clear equinoctial asymmetry in TEC response to the storms were observed. Weak and short-lived positive TEC deviations as well as strong and long-lasting negative trends were observed in summer storm during the main and recovery phases respectively over the high and low latitudes whereas in winter storm, the highest positive TEC deviations was recorded during the main phase over the entire latitudes. TEC enhancement dominated all the stations during the autumn (March) equinox storm while TEC depletion was majorly observed during the spring (September) equinox. All these variations find their explanations in the thermospheric composition change and circulation. Future work with direct or modeled measurement of atomic Oxygen to molecular Nitrogen ratio (O/N2), large number of storms and other possible factors such as variations in storm’s intensity and local time dependence of the storm onset is expected to validate the observations in this study.  相似文献   

20.
A GNSS water vapour tomography system developed to reconstruct spatially resolved humidity fields in the troposphere is described. The tomography system was designed to process the slant path delays of about 270 German GNSS stations in near real-time with a temporal resolution of 30 min, a horizontal resolution of 40 km and a vertical resolution of 500 m or better. After a short introduction to the GPS slant delay processing the framework of the GNSS tomography is described in detail. Different implementations of the iterative algebraic reconstruction techniques (ART) used to invert the linear inverse problem are discussed. It was found that the multiplicative techniques (MART) provide the best results with least processing time, i.e., a tomographic reconstruction of about 26,000 slant delays on a 8280 cell grid can be obtained in less than 10 min. Different iterative reconstruction techniques are compared with respect to their convergence behaviour and some numerical parameters. The inversion can be considerably stabilized by using additional non-GNSS observations and implementing various constraints. Different strategies for initialising the tomography and utilizing extra information are discussed. At last an example of a reconstructed field of the wet refractivity is presented and compared to the corresponding distribution of the integrated water vapour, an analysis of a numerical weather model (COSMO-DE) and some radiosonde profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号